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a  b  s  t  r  a  c  t

Estimating  population  size  and  understanding  its variation  is a  fundamental,  yet  complicated,  aim  of  many
ecological  studies.  We  considered  the  problem  of  estimating  spring  and  autumn  population  abundance,
size-dependent  population  structure  and  sex-ratio  of  the endemic  Balearic  Lizard,  Podarcis  lilfordi  from  a
three occasions  capture-recapture  study.  We  used  a  Bayesian  formulation  of  individual  covariate  models
to incorporate  individual  sex,  size  and  trap-response.  We  first  considered  a set  of  simulated  data  with
a  medium-to-low  probability  of recapture  and  individual  recapture  heterogeneity  to  evaluate  potential
problems  in model  fitting  and  selection.  Results  from  simulated  data  indicated  a  low  performance  in
parameter  estimation  and  model  selection  when  probability  of detection  was  low  (0.15–0.30).  We  found  a
negative  permanent  trap response  and  a positive  effect  of size  on  detection  probability  in  the  spring  survey
but  not  in the  autumn  one.  The  estimated  mean  densities  varied  from  about  800  to  1000  lizards  ha−1,  a
high  value  when  comparing  with  mainland  lizard  populations.  The  observed  increase  in  abundance  was
probably  due  to a drop  in territorial  behaviour  and  the  immigration  of females  into  the  area  sampled.  As
a consequence,  sex-ratio  changed  from  nearly  even  in  June  (mean  posterior,  95%CRI;  0.928,  0.676–1.167)
to  a female-skewed  population  in  October  (0.612,  0.478–0.772).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The distribution of individuals over time and space is a central
theme in evolutionary and ecological theories (Begon et al., 1990),
but robust estimates of population size are notoriously difficult to
obtain (Kendall, 1999, see review in Seber, 1982, 1992; Schwarz and
Seber, 1999). Exhaustive counts are not possible and the number of
individuals should be inferred from a partial sampling of the pop-
ulation using appropriate statistical models (Seber, 1982; Skalski
et al., 2005b; Williams et al., 2002). Capture-mark-recapture (CMR)
models, based on multiple observations of marked individuals, are
now common methods to estimate animal abundance (Seber, 1982;
Schwarz and Anderson, 2001; Williams et al., 2002). These models
rely on the assumption that all individuals are independent and
equally likely to be captured. Nevertheless, this is not always veri-
fied. In a study on elk Cervus elaphus population abundance, Skalski
et al. (2005a) found that the probability of being marked covaried
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with herd size, so that animals from the same herd tend to have
the same encounter history. Heterogeneity in detection probabil-
ity might also be due to individual characteristics, such as size or
sex. The recapture probability of the sessile Pen Shell Pinna nobilis,
for example, depends on shell width and assuming equal detec-
tion would lead to underestimation of recruitment rate (Kéry and
Schaub, 2011; Hendriks et al., 2012). Unequal catchability also rises
when recapture probability at a given time depends on whether an
animal was captured before or not. This trap-response can be pos-
itive, when captured animals are more likely to be captured again,
or negative, when captured animals are less likely to be captured in
the future (Pollock et al., 1990). Trap-response might be common in
studies with baited traps or in which animals have to be physically
recaptured. Unequal catchability across individuals typically tends
to underestimate the true animal abundance (Pollock et al., 1990).

Probably the most widely used method for modelling individual
covariates in closed population models is the Huggins-Alho pro-
cedure (Huggins, 1989; Alho, 1990). The method is based on the
so-called “conditional likelihood” (i.e. the likelihood for the data
conditional on capture) and is built into freely available software
such as program MARK (White and Burnham, 1999). The Hug-
gins’ estimator is an ad hoc solution to the problem and it might
be favoured in practice because it is “design-based”, and should

0304-3800/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ecolmodel.2013.07.015

dx.doi.org/10.1016/j.ecolmodel.2013.07.015
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ecolmodel.2013.07.015&domain=pdf
mailto:simone.tenan@muse.it
dx.doi.org/10.1016/j.ecolmodel.2013.07.015
https://www.researchgate.net/publication/31139851_Huggins_R_M_1989_On_the_statistical_analysis_of_capture_experiments_Biometrika?el=1_x_8&enrichId=rgreq-608ebf95-2091-47f1-b94d-996e5d020572&enrichSource=Y292ZXJQYWdlOzI1NjA5MzIxOTtBUzoyMDI0NjY1Mzc4MDc4NzdAMTQyNTI4MzE5MjY4OA==
https://www.researchgate.net/publication/236982031_Statistical_Inference_for_Capture-Recapture_Experiments?el=1_x_8&enrichId=rgreq-608ebf95-2091-47f1-b94d-996e5d020572&enrichSource=Y292ZXJQYWdlOzI1NjA5MzIxOTtBUzoyMDI0NjY1Mzc4MDc4NzdAMTQyNTI4MzE5MjY4OA==
https://www.researchgate.net/publication/236982031_Statistical_Inference_for_Capture-Recapture_Experiments?el=1_x_8&enrichId=rgreq-608ebf95-2091-47f1-b94d-996e5d020572&enrichSource=Y292ZXJQYWdlOzI1NjA5MzIxOTtBUzoyMDI0NjY1Mzc4MDc4NzdAMTQyNTI4MzE5MjY4OA==
https://www.researchgate.net/publication/250075860_Robustness_of_Closed_Capture-Recapture_Methods_to_Violations_of_the_Closure_Assumption?el=1_x_8&enrichId=rgreq-608ebf95-2091-47f1-b94d-996e5d020572&enrichSource=Y292ZXJQYWdlOzI1NjA5MzIxOTtBUzoyMDI0NjY1Mzc4MDc4NzdAMTQyNTI4MzE5MjY4OA==
https://www.researchgate.net/publication/216771416_Program_MARK_Survival_Estimation_from_Populations_of_Marked_Animals?el=1_x_8&enrichId=rgreq-608ebf95-2091-47f1-b94d-996e5d020572&enrichSource=Y292ZXJQYWdlOzI1NjA5MzIxOTtBUzoyMDI0NjY1Mzc4MDc4NzdAMTQyNTI4MzE5MjY4OA==
https://www.researchgate.net/publication/20914478_Logistic_Regression_in_Capture-Recapture_Models?el=1_x_8&enrichId=rgreq-608ebf95-2091-47f1-b94d-996e5d020572&enrichSource=Y292ZXJQYWdlOzI1NjA5MzIxOTtBUzoyMDI0NjY1Mzc4MDc4NzdAMTQyNTI4MzE5MjY4OA==


40 S. Tenan et al. / Ecological Modelling 267 (2013) 39– 47

consequently be robust to model assumptions (but see Little, 2004).
Here we adopted an alternative approach, a fully model-based for-
mulation that considers the joint distribution of the encounter
history observations and the individual covariate, by prescribing
a probability distribution for the latter (Royle, 2009). The fully
model-based approach has several advantages compared to classi-
cal estimation procedure. It allows (i) inferences on the population
distribution of the covariate while the ‘classical’ methods are con-
ditional to the observed data, (ii) handling missing values in the
covariates, and making explicit inferences about their values (in
the case of spatial capture-recapture models; e.g. Royle and Young,
2008), and (iii) estimating proper variances for population size N
directly, avoiding the use of the delta approximation. Moreover,
Huggins’ conditional approach prevents the modelling of N directly,
which is often the focus of the inference.

Here we used the fully model-based approach to estimate popu-
lation size and size-dependent population structure in the Balearic
Lizard Podarcis lilfordi,  a lizard endemic to the Balearic archipelago
(Spain) using three-occasions capture-recapture data. The method
permits incorporation of heterogeneity of recapture due to indi-
vidual characteristics, as well as trap-response, and has recently
been extended to include between-occasion survival parameters
(Gardner et al., 2010a).

Potential problems in model fitting and selection can arise
from the analysis of small or sparse datasets, gathered during few
sampling occasions and/or in the presence of a low probability of
detection and individual heterogeneity. Among the expected prob-
lems we can mention a low precision in parameter estimates, the
underestimation of population size, and model selection uncer-
tainty. Simulation of scenarios that mimic  the own setting is a
practice suggested to evaluate and anticipate potential problems
in model fitting and selection (e.g. Marques et al., 2010). To this
end, we first used sets of simulated data with a medium-to-low
probability of recapture and individual recapture heterogeneity,
i.e. size-dependent recapture and trap-response. We  then applied
the approach to real data and extended the method to the simul-
taneous analysis of males and females, contrasting hypotheses on
adult sex-ratio (ASR) and sex-by-size population structure. ASR is a
crucial demographic parameter affecting the viability of vertebrate
populations and it is of particular interest in some reptile species
due to environmental sex-determining mechanisms. It figures also
amongst the determining factors in calculations of both demo-
graphic and genetic effective population sizes (e.g. Le Galliard et al.,
2005b). Estimates of ASR in the presence of imperfect detection can
be potentially biased by differences between the sexes in the detec-
tion probability. We  exploited a fully model-based formulation of
individual covariate models to estimate ASR while accounting for
potential sources of detection heterogeneity, and to explore the
variation of ASR between two seasons.

2. Materials and methods

2.1. Model formulation

We  refer to the classical closed population situation in which a
population of N individuals is sampled J times, yielding encounter
histories on n ≤ N individuals. If we assume that detection proba-
bility does not vary over J occasions we can consider the capture
frequencies of the sample of n unique individuals, where indi-
viduals i = 1, 2, . . .,  n were captured {yi}ni=1 times. An auxiliary
individual variable (xi, in this case body length) is thought to influ-
ence the detectability of individuals. We  assumed that captures are
independent and identically distributed (i.i.d.) Bernoulli trials with
parameter p(xi; !1) ≡ pi, with logit(pi) =  ̨ + ˇxi, where the parame-
ter !1 is the vector !1 = (˛, ˇ). We  adopted a Bayesian formulation of

the individual covariate model based on parameter-expanded data
augmentation (e.g. Royle and Dorazio, 2011). The general concept
is to augment the observed data set with a fixed, known number,
say M − n, of “all zero” capture-recapture histories, and to analyze
the augmented dataset (of size M)  with a new model. Given the
augmented dataset, we  introduced a set of latent variables zi for
i = 1, 2, . . .,  M which are Bernoulli trials with the parameter  .  This
parameter is the inclusion probability, that is the probability that
an individual from the augmented data list is an element of the
exposed population. Thus, 1 −   is the zero-inflation parameter,
quantifying the number of excess zeros in the augmented data list.
Parameter   is related to N in the sense that N ∼ Binomial(M,  )
under the model for the augmented data. Conceptually, M repre-
sents the size of a super-population of “pseudo-individuals” that
potentially could belong to the real population (of size N) exposed
to sampling. If zi = 0, then individual i (from the super-population
of size M)  does not correspond to an individual in the population
exposed to sampling, whereas if zi = 1 individual i is a member of
the population of size N (Royle and Dorazio, 2008). We  assert that
M is sufficiently large so that the posterior of N was not truncated
(this can be achieved by trial and error with no philosophical or
practical consequence; Royle and Young, 2008). Under data aug-
mentation, population size is a derived parameter N =

∑M
i=1zi, and

the estimation problem is converted from one of estimating N to
one of estimating the parameter   and summaries of the latent
variables z.

The model for the augmented data is composed of three com-
ponents:

1. zi ∼ Bernoulli( );
2. [yi|p(xi)] ∼ Binomial(J, zi p(xi)), with logit(pi) =  ̨ + ˇxi;
3. [xi]∼Normal("x, #2

x )

where the conventional “bracket notation” ([·]) represents the
probability density function (pdf), or the conditional pdf ([·|·]) of
the related term.

We further extended the model to account for a behavioural
effect due to a possible permanent trap response (Royle and
Dorazio, 2008), so that the detection model is

logit(pij) = ˛0(1 − x1,ij) + ˛1x1,ij + ˇx2,i. (1)

The covariate x1,ij indicates if the individual i was captured at
some previous time (x1,ij = 1 if the individual was  captured previ-
ous to sample j), and x2,i is the body length covariate. In this model
parametrisation, ˛0 is the mean for individuals that have not pre-
viously been captured, and ˛1 is the mean for previously captured
individuals. We  reparametrised the model in Eq. (1) by expressing
˛0 as the product of a trap response parameter (tr) and ˛1, which
gives the following linear predictor:

logit(pij) = tr ˛1 (1 − x1,ij) + ˛1 x1,ij +  ̌ x2,i. (2)

Expressing ˛0 as a function of ˛1 allowed us to save one
parameter when modelling real data using sex-specific detection
probabilities (see below the “Case study” section), assuming that
the degree of trap response was equal for males and females. In fact,
instead of having four sex-specific parameters, two  for both ˛0 and
˛1, their number is reduced to three in the new parametrisation (tr,
˛1,males and ˛1,females).

For estimation by data augmentation, the observed data set con-
taining information on individual sex was subjected to two distinct
data augmentations by introducing, for each sex u, a fixed number
(Mu − nu) of “all zero” capture-recapture histories, missing covari-
ate values {xi}Mui=nu+1, sex indicator values {sexi}Mui=nu+1, and a set of
latent indicator variables {ziu}Mui=1 that are observed (ziu = 1) for i = 1,
2, . . .,  nu and unobserved for i = nu + 1, . . .,  Mu.
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2.2. Simulated data

We  simulated a population of N = 200 individuals along with
their standardized normally distributed body length and subjected
them to sampling considering detection probability positively
affected by body length (with a covariate coefficient  ̌ = 0.5 on
the logit scale) and two different levels for the mean detection
probability (p = 0.3 and p = 0.6, respectively) without any random
noise added. In addition, we considered a negative behavioural
response after initial capture (trap shyness) again for two dis-
tinct levels of detection probability. More specifically, we  fixed
the mean probability of being detected for the first time, p0, as
twice the probability at next occasions, p1. We  generated four
sets of data considering three sampling occasions. Simulated data
were modelled with and without a trap-response and the indi-
vidual covariate (the full linear predictor is reported in Eq. (1))
to investigate the consequences of fitting a wrong model. For
each of the four scenarios, we simulated 50 datasets to which the
specific model was fitted. Summaries of the mean across the 50
replicates of the Bayesian point estimate (of each posterior statis-
tic) are reported, for each scenario and parameter, in Appendix B
(Tables B.1 and B.2). In addition we provided the percentage of 95%
posterior intervals that contained the true value of each parame-
ter.

2.3. Case study

Lizards were captured using pit traps positioned along and
within the bushes over an area of c. 0.25 ha, in a five hectares islet
off the southern coast of Mallorca Island (Balearic Islands, Spain).
Captured lizards were measured and sexed by the inspection of
femoral pores. Recent work has shown that individuals of Podarcis
muralis can be recognized by the highly variable and individually
unique pattern of pectoral scales (Sacchi et al., 2010). In a pilot
study conducted during the period 2007–2008, we ascertained
that individual identification of Balearic lizards can be achieved
based on the same criterion (results not shown). Each captured
lizard was measured and photographed using a digital camera
prior to release at the same trap where it was  captured. Indi-
viduals were identified from their pectoral scale patterns using
the computer aided APHIS procedure (Moya et al. in preparation).
For the analyses we used the capture-photo-recapture data col-
lected during three consecutive days in June (130 lizards, 64 males
and 66 females) and October 2010 (130 lizards, 49 males, 81
females).

We initially considered four potential sex-independent models.
Model 1, denoted by M(.), assumed p constant across individuals
and time; Model 2, M(b), in which p is affected only by a possi-
ble permanent behavioural effect; Model 3, M(h), in which there is
heterogeneity among the capture probabilities of individuals that
depends on their body length, and Model 4, M(b, h), in which p is
influenced by both trap response and individual heterogeneity. For
the analyses, the body length covariate was centred by subtracting
the mean.

We  then extended the best supported model for each of the
two datasets considering sex-specific parameters and selected
the best model from which to estimate population sex-ratio (see
Appendix A for further details). Sex-ratios were then derived,
together with their estimate of uncertainty, as (Nmales/Nfemales) =
(
∑M

i=1zi,males/
∑M

i=1zi,females).
Pit traps selected lizards above a certain size and thus able to

reach and fall into the trap. This sampling deficiency affects the
interpretation of parameter estimates, which is only referred to
individuals in the population that have some nonzero probability
of being detected.

2.4. Model selection and checking

The Bayesian variable selection procedure of Kuo and Mallick,
1998, see Appendix A for further details) was  tested for each repli-
cate simulated dataset to evaluate its performance in selecting
the correct model (Appendix B, Table B.3). The same method was
then applied to real data (Appendix A). Sensitivity of posterior
model probabilities to prior specification was tested by repeating
the model selection for three different priors for all linear predic-
tor coefficients, assumed drawn from N(0, #2) with #2 ∈ {10, 100,
1000} (Appendix A, Tables A.1 and A.2; Appendix B, Table B.3).

We tested goodness-of-fit of the Normal model for the individ-
ual covariate using a standard Bayesian p-value approach (Meng,
1994). To do this we (i) generated new realizations of the data set
from the posterior distribution (xrep), (ii) split both observed (x) and
predicted body length data into 10 classes (−∞ , −4, − 3, − 2, − 1, 0,
1, 2, 3, 4, ∞), (iii) computed the probabilities of being in each class
for each of the posterior samples of the Normal distribution param-
eters, (iv) computed a test statistic for both observed (D(x, !)) and
simulated samples (D(xrep, !)), (v) derived the Bayesian p-value as
the proportion of times the discrepancy function based on predic-
tive data is higher than the observed discrepancy, P(D(xrep, !) > D(x,
!)|x). The Freeman–Tukey statistic (Freeman and Tukey, 1950) was
used as discrepancy function.

2.5. Bayesian estimation and size-dependent population structure

We augmented both simulated and real data with M − n = 500
observations of y = 0, and corresponding missing covariates. Models
with sex-specific parameters were run on a single dataset previ-
ously augmented of 200 zeros for each sex. Posterior masses for
the estimates of population size N were located well away from
the upper bounds, indicating that sufficient data augmentation was
used. As in Royle (2009), we  adopted conventional default priors
which, ostensibly, express little prior information about the model
parameters (Appendix A, Table A.3, Fig. A.1). The models were
implemented in JAGS (Plummer, 2003) through the R2jags package
(Su and Yajima, 2012). Data and an R (R Core Team, 2012) script for
the sex-specific model are provided as a supplement. Summaries
of the posterior distribution were calculated from three indepen-
dent Markov chains initialized with random starting values, run
50,000 times after a 20,000 burn-in and re-sampling every 20 draws
for simulated data. For modelling real data 100,000 iterations, a
50,000 burn-in and a thinning rate of 30 were used. We  computed
the Brooks–Gelman–Rubin convergence diagnostic (R̂; Brooks and
Gelman, 1998) for which values near 1.0 indicate convergence. For
our data, the R̂ for each parameter was less than 1.009.

From the super-population of latent variables zi we can extract
and tabulate data for individuals that are members of the popula-
tion of N individuals exposed to sampling (those with z = 1). From
this sample we summarized size dependent population structure
for the whole sample of individuals (males and females) in the study
area.

3. Results

3.1. Simulated data

Models that contain the effects considered when data were
simulated, in this case an individual heterogeneity and the pres-
ence/absence of a behavioural response, led to good estimates of
N and other parameters of interest (Appendix B, Table B.1). As
expected, precision was lower in the presence of a trap response
and a low detection probability (p0 = 0.3, p1 = 0.15). When data
generated without trap response were modelled considering a
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Table 1
Posterior summaries of model parameters under the best model. For June, the model
included permanent behavioural response and individual heterogeneity on detec-
tion  probability. A constant detection probability was modelled for October. N is
the estimated population size, the parameters p0 and p1 are the mean detection
probabilities (on the probability scale) for the first capture event and subsequent
occasions respectively,  ̌ is the coefficient on body length, "x and #x are respec-
tively the centred mean and SD of population body length,   is the ‘zero-inflation’
parameter associated with data augmentation.

Parameter Mean SD 2.5% Median 97.5%

June
N 179.141 32.155 145.000 171.000 259.000
p0 0.415 0.072 0.265 0.420 0.548
p1 0.264 0.036 0.197 0.263 0.335
ˇ  0.774 0.263 0.291 0.760 1.314
"x −0.132 0.105 −0.370 −0.122 0.037
#x 0.696 0.052 0.606 0.693 0.808
  0.285 0.054 0.216 0.275 0.416

October
N  242.530 29.849 194.000 239.000 310.000
p  0.231 0.032 0.172 0.231 0.295
  0.385 0.051 0.300 0.380 0.497

permanent trap response effect, precise estimates were obtained
only for a moderate-to-high mean detection probability (p = 0.6).
Conversely, when data simulated with a negative trap response
were analysed without any behavioural effect, parameter estimates
were imprecise, regardless of the mean value of detection probabil-
ity. The effect of individual heterogeneity on detection probability
(ˇ) was correctly estimated with or without a behavioural response.
Furthermore, parameter estimates were relatively close to the
reference values when the model did not take individual hetero-
geneity into account (Appendix B, Table B.2).

The model selection procedure performed well in selecting the
correct model in presence of a moderate-to-high mean detection
probability (p = 0.6). On the contrary, it was poor in the scenario
with a trap-response and a low detection probability (p0 = 0.3,
p1 = 0.15). Posterior model probabilities were fairly stable under
the different prior sets, with an expected performance loss under
more vague priors, especially in the presence of a low detection
probability (Appendix B, Table B.3).

3.2. Case study

With the June data, the best supported model included both
a behavioural response and an effect of body length (M(b, h)),
with a low sensitivity of posterior model probabilities on prior
assumptions. In contrast, for the October data set the model with a
constant detection probability received the largest posterior prob-
ability (Appendix A, Table A.1). Posterior summaries of parameter
estimates, from the most supported model for each season, are
given in Table 1. June population size was estimated to be about
30% less than in October (posterior median, 95 % CRI; NJune=171,
145–259; NOctober=239, 194–310).

Posterior distributions of p0, p1, and  ̌ were concentrated
above zero in the June data. Thus, the results indicate a decrease
in detection probability once an individual is captured, and a
positive effect of size on the detection probability (Fig. 1). The esti-
mated population mean and standard deviation of the body length
covariate indicate that the sample of measured covariate values
(mean = 6.42 cm,  SD = 0.66) was slightly biased towards greater val-
ues. The positive bias of sampled body length values is consistent
with positive values of ˇ. Back-transforming the posterior mean
of the estimate for " gave a population mean E[x] = 6.29 cm,  with
SD[x] = 0.70 (Fig. 2). The proportion of lizards with body length
lower than the sample mean was estimated to be 13% higher than
that derived by the sampled data. Goodness-of-fit p-value (0.89)

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.0

0.2

0.4

0.6

0.8

1.0

Body length (cm)

D
et

ec
tio

n 
pr

ob
ab

ilit
y

Fig. 1. Spring relationship between detection probability p and body length in
Podarcis lilfordi from Mallorca (Spain). The blue solid line denotes first captured
Balearic lizards, the red dotted line stands for lizards captured at least once in the
previous occasions. Shaded areas represent 95%CRI. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of the
article.)

Fig. 2. Spring size dependent population structure of Podarcis lilfordi in Mallorca
(Spain). Population structure as density of individuals in relation to body length, for
sampled Balearic lizards (dashed line) and for population estimates (solid line).

indicated that the fit of the Normal model for body length was
adequate (i.e., p-value was  between 0.05 and 0.95) and the assump-
tion provides an adequate description of the individual covariate
data. For the autumn season the most supported model did neither
include a trap-response effect nor an effect of body length on the
detection probability (Table 1).

We  extended the best supported models to males and females,
considering sex-specific probabilities of detection and of being
in the population ( ) for both seasons (Appendix A). A sex-
independent  ̌ received the larger posterior probability using
the June data, whereas a sex-independent detection probabil-
ity was mainly supported by the October data (Appendix A,
Table A.2).

The estimates indicated a change in the sex-ratio over the sum-
mer, from an even sex-ratio in June (mean posterior, 95 % CRI;
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Table 2
Posterior summaries of model parameters under the best sex-dependent model. For
June, the model included sex-specific permanent behavioural response and common
individual heterogeneity on detection probability. A constant detection probability
was  modelled for October. Nm and Nf denote the estimated number of males and
females respectively. Nm/Nf denotes the estimated sex-ratio. For sex u, the parame-
ters  p0,u and p1,u are the sex-specific mean detection probabilities (on the probability
scale) for the first capture event and subsequent occasions respectively,  ̌ is the
coefficient on body length, "x and #x are respectively the centred mean and SD of
population body length,  u is the sex-specific ‘zero-inflation’ parameter associated
with data augmentation.

Parameter Mean SD 2.5% Median 97.5%

June
Nm 92.521 22.104 71.000 86.000 153.000
Nf 101.338 27.774 73.000 93.000 182.000
Nm/Nf 0.928 0.121 0.676 0.932 1.167
p0,m 0.401 0.073 0.236 0.410 0.526
p0,f 0.375 0.087 0.192 0.381 0.532
p1,m 0.287 0.050 0.196 0.286 0.388
p1,f 0.239 0.046 0.157 0.236 0.337
ˇ  0.866 0.332 0.274 0.838 1.592
"x −0.147 0.119 −0.448 −0.128 0.026
#x 0.652 0.051 0.565 0.647 0.764
 m 0.352 0.088 0.247 0.332 0.589
 f 0.382 0.108 0.255 0.355 0.689

October
Nm 93.144 13.938 71.000 91.000 125.000
Nf 153.095 20.601 120.000 151.000 200.000
Nm/Nf 0.612 0.075 0.478 0.607 0.772
p  0.228 0.032 0.168 0.227 0.292
 m 0.375 0.063 0.267 0.370 0.516
 f 0.545 0.078 0.412 0.538 0.718

0.928, 0.676–1.167) to an uneven sex-ratio in October following
an increase in the number of females (0.612, 0.478–0.772; Table 2
and Fig. 3). Results for June indicate lower detection probabilities
for females and a positive effect of individual size on detection
probability for both sexes (Table 2).

4. Discussion

4.1. Testing model performance

The use of CMR  models to estimate animal abundance in closed
populations relies on the validity of model assumptions, the main
ones being that population is closed, marks are not lost and individ-
uals are independent and equally capturable. In some cases, results

Fig. 3. Population sex-ratio (males/females) of Podarcis lilfordi in the island of
Mallorca (Spain).

are robust to deviation from these assumptions and assessing the
performance of CMR  models in different situations would provide
important guidelines for survey design (e.g. Skalski et al., 2005a)
and to anticipate potential problems related to model performance
(Marques et al., 2010). In this paper we used individual covariate
models in a Bayesian formulation to estimate population abun-
dance and sex-ratio in the Balearic lizard, pre-emptively evaluating
method performance by means of simulated scenarios that mimic
our setting.

Results from simulated data showed that under the correct
model, estimates of population size, population structure and
recapture probabilities were close to those used in the simulations.
Interestingly using a model different from the one used to simulate
the data, did not always result in biased estimates. A general model
including an ‘unnecessary’ trap-response effect, for example, per-
formed well when the recapture probability was moderately high
(p = 0.6), but not when it was  moderately low (p = 0.30). Applying
this model to data would be ‘playing safe’ only when capture prob-
ability is high. The opposite was never true; simpler models, i.e.
with no trap-response, were never adequate when trap-response
was present, and population size tended to be overestimated. A
low recapture probability could also influence the ability to select
the correct model by means of the employed Bayesian variable
selection procedure (Kuo and Mallick, 1998), in particular in the
presence of both behavioural response and individual heterogene-
ity.

4.2. Population size, sex-ratio and size structure

Pérez-Mellado et al. (2008) used line transect methods
(Buckland, 2001) to estimate the density of the Balearic lizard in
41 islands of the Balearic archipelago. They found that late spring
density varies across the islets of the archipelago from a minimum
of 32 to a maximum of about 8000 lizards ha−1 with most islands
having a density lower than 1000 ha−1 (median = 717; Table 1 in
Pérez-Mellado et al., 2008). The reason of this variability is not
fully known and it is likely to be the result for multiple factors
such as island vegetation structure, density compensation and pre-
dation relaxation (Pérez-Mellado et al., 2008; Salvador, 2009). We
estimated a mean June density of about 800 lizards ha−1, close to
the median density in the archipelago but a third of the density
found by Pérez-Mellado et al. (2008) for the same island. In October,
the lizard population was  estimated to be slightly denser than in
spring (c. 1000 lizards ha−1). Part of the difference between our
estimates and those reported may  be due to the natural fluctua-
tions of the population from one year to the next. However, the
difference might arise, in part, from the systematic biases of the
two methodologies. In habitat with dense vegetation, where ani-
mals are more difficult to detect, robust density estimates by line
transect are hardly achievable. Capture-mark-recapture methods
are thought to be more accurate than visual methods for moni-
toring elusive species (Wanger et al., 2009). However, in our case
the capture method selects for individuals large enough to reach
and fall into the traps (body length ≥4.8 cm). This might lead
to underestimating total population size, depending on the pres-
ence and proportion of very small individuals. In June, we found
that recapture probability covaried positively with lizard size so
that the estimated population is more skewed toward smaller
sizes than the observed sample. The goodness-of-fit test based
on the Bayesian p-value suggested that the assumption of a nor-
mally, and hence symmetrically, distributed covariate provides an
adequate description of the data. Finally, we have shown how
capture-recapture models of the ordinary sense, but analysed using
a Bayesian formulation with data augmentation, can be extended to
the simultaneous analysis of multiple (two, in our case) groups. This
approach can be applied for estimating latent frequencies of other
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Table A.1
Summaries of posterior model probabilities under different prior sets, for sex-independent models applied to the two seasonal datasets. Model notation indicates the
inclusion, in the detection function, of a constant term M(.), a term for behavioural response M(b), a term for body size effect M(h), or the latter two together M(b, h). Results
are  related to three different priors for linear predictor coefficients (assumed drawn from N(0, #2) with a varying #2).

Model June October

#2 = 10 #2 = 100 #2 = 1000 #2 = 10 #2 = 100 #2 = 1000

M(.) 0.000 0.000 0.000 0.444 0.750 0.895
M(b)  0.035 0.102 0.047 0.435 0.211 0.090
M(h)  0.000 0.000 0.000 0.065 0.033 0.013
M(b,  h) 0.965 0.898 0.953 0.056 0.007 0.002

Table A.2
Summaries of posterior model probabilities under different prior sets, for sex-dependent models applied to the two seasonal datasets. Model notation is as in Table A.1,  with
the  additional term “sex” in case of sex-specific parameters. As above, results are related to three different priors for linear predictor coefficients (assumed drawn from N(0,
#2) with a varying #2).

Model June Model October

#2 = 10 #2 = 100 #2 = 1000 #2 = 10 #2 = 100 #2 = 1000

M(bsex , h) 0.800 0.995 0.822 M(.) 0.625 0.840 0.987
M(bsex , hsex) 0.200 0.005 0.178 M(. sex) 0.375 0.160 0.013

categorical individual covariates (e.g. colour and pattern poly-
morphisms) and distributions of individual covariates within a
population (e.g. parasite load or weight). The method we used
allowed the estimation of lizard sex-ratio taking advantage of
the parameters shared between groups (see also Gardner et al.,
2010b for another example with spatial capture-recapture mod-
els). In our case, an even sex-ratio at late spring was  followed by
an uneven autumn sex-ratio, with an increase in the estimated
number of females in the sampled population. Adult sex-ratio
in lizards is often reported to be female biased, as expected in
polygynous vertebrates (Massot et al., 1992; Le Galliard et al.,
2005a; Buckley and Jetz, 2007). However this varies substantially
in time and space (Massot et al., 1992; Galán, 2004). Schoener
and Schoener (1980) proposed a mechanistic model in which the
number of females changed with per capita resource availabil-
ity while the number of males depended on habitat quality. The
interaction between resource availability and habitat quality would
generate spatio-temporal changes in the sex-ratio. Indeed, biased
adult sex-ratio can arise temporally due to the interaction between
ephemeral resources and despotic behaviour (Pérez-Mellado, per-
sonal communication) or can be due to a lower detection or
higher mortality probability of one of the two sexes (Schoener
and Schoener, 1980; M’Closkey et al., 1998; Galán, 2004). In June
we found that recapture probability was slightly lower in females,
but once corrected for this difference, the estimates of female
number was only slightly higher than the estimated number of
males. In Schoener and Schoener’s (1980) model this would cor-
respond to a high level of per capita resources. The area surveyed is
sheltered from the sea storms and limited by a small beach reg-
ularly visited by tourists during the summer. It is possible that
the extra food provided by tourists or the sheltered character of
the vegetation increases the per capita resources. On the other
hand, the loss of male territorial behaviour during autumn might
be responsible for a larger number of females migrating into the
area at the end of the summer. At the moment we do not have
enough elements to explain the observed shift in adult sex-ratio,
but if temporal resources and female movements are the proxi-
mal  causes, we expect another change in the sex-ratio before the
spring.

5. Conclusions

In summary, we tackled the issue of estimating population
size from capture-mark-recapture data for an endemic lizard.
A fully model-based formulation of individual covariate models

was used after testing its performance in simulated scenar-
ios that mimic  our setting. We  accounted for heterogeneity of
recapture due to individual characteristics and behavioural trap
response while exploring the variation between two  seasons in
population size, size-dependent population structure, and adult
sex-ratio.

The estimated increase in population abundance, from June to
October, was  probably linked to both an increase in the number
of individuals available for sampling, i.e. larger than a threshold
dimension, and to a drop in male territorial behaviour with the
resulting immigration of females into the sampling area. As our
results suggest, recruitment of small individuals into the samp-
ling population would not necessarily affect the sex-ratio which
changed from nearly even to female-skewed. Sex-ratio is a cru-
cial demographic parameter affecting the viability of vertebrate
populations, and the size of the latter represents perhaps their
key descriptor. Thus, special care must be taken to obtain less
biased estimates, and the method we adopted accomplishes this
task.
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Table A.3
Prior sets assumed for sensitivity analysis of posterior parameter estimates.

Parameter Prior set 1 Prior set 2 Prior set 3

 ̨ N(0, 1000) U(− 10, 10) U(− 10, 10)
tr  N(0, 1000) U(− 5, 5) U(− 10, 10)
ˇ  N(0, 1000) U(− 10, 10) U(− 10, 10)
"x N(0, 1000) U(− 10, 10) U(− 10, 10)
$x = 1/#2

x Ga(0.01, 0.01) Ga(0.01, 0.01) Ga(0.01, 0.01)
  U(0, 1) U(0, 1) U(0, 1)
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Fig. A.1. Prior (dashed line) and posterior (solid line) distributions of parameter for trap response (tr). Sensitivity analysis gave similar posterior mean and 95%CRI for tr
under  different priors [posterior mean (95%CRI), under N(0, 1000): 0.357 (−0.271 to 1.237), panel a; under U(− 5, 5): 0.350 (−0.291 to 1.243), panel b; under U(− 10, 10):
0.351  (−0.270 to 1.241), panel c. The probabilities that tr was positive are 0.925, 0.935, and 0.936, respectively.

Appendix A. Model selection and prior assumptions for
sensitivity analysis on posterior distributions

We  performed Bayesian model selection using the method
developed by Kuo and Mallick (1998) and followed by Royle (2009)

to calculate posterior model probabilities in a very similar case.
Examples of implementation are reported in Royle (2008), Royle
and Dorazio (2008). For a performance comparison of this and other
variable selection methods see O’Hara and Sillanpää (2009). For
each real data set, we  selected the four (sex-independent) models

Table B.1
Posterior summaries of parameters for models containing only standardized body length as a covariate on detection probability (p) or the length effect plus a permanent
behavioural response (p0, p1). All detection probability values are given in probability scale. For each scenario and parameter, the mean across the 50 replicates of the Bayesian
point  estimate (of each posterior statistic) is reported, together with the percentage of 95% posterior intervals that contained the true value of each parameter (CI).

Simulated data Model Mean SD 2.5% Median 97.5% CI

p = 0.30 N 217.874 31.853 172.887 212.120 297.217 0.94
p  0.288 0.036 0.219 0.288 0.360 0.96
ˇ  0.548 0.177 0.210 0.547 0.902 0.92

N  269.244 80.330 169.461 249.570 471.009 0.92
p0 0.256 0.071 0.126 0.254 0.399 0.94
p1 0.286 0.038 0.214 0.285 0.363 0.06
ˇ  0.558 0.175 0.221 0.557 0.904 0.90

p  = 0.60 N 201.975 6.470 191.439 201.190 216.632 0.98
p  0.599 0.025 0.549 0.600 0.648 0.98
ˇ  0.508 0.117 0.286 0.506 0.742 0.98

N  204.645 10.073 190.307 202.890 229.187 0.98
p0 0.589 0.048 0.490 0.591 0.676 0.94
p1 0.610 0.030 0.551 0.611 0.668 0.00
ˇ  0.528 0.118 0.302 0.526 0.762 0.96

p0 = 0.30 N 341.290 71.437 234.047 330.140 507.253 0.10
p1 = 0.15 p 0.167 0.031 0.113 0.166 0.232 0.00

ˇ  0.526 0.213 0.106 0.528 0.933 0.94

N  278.706 82.956 172.113 259.380 477.347 0.94
p0 0.254 0.071 0.129 0.251 0.397 0.90
p1 0.147 0.030 0.093 0.145 0.210 0.98
ˇ  0.594 0.204 0.200 0.593 0.997 0.94

p0 = 0.60 N 280.355 28.779 236.796 276.100 347.863 0.00
p1 = 0.30 p 0.348 0.030 0.290 0.348 0.406 0.00

ˇ  0.606 0.137 0.345 0.604 0.876 0.92

N  204.502 10.124 190.028 202.740 228.988 0.94
p0 0.589 0.048 0.490 0.591 0.676 0.92
p1 0.294 0.028 0.239 0.293 0.350 0.94
ˇ  0.542 0.123 0.305 0.540 0.786 0.96
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Table B.2
Posterior summaries of parameters for models with a constant detection probability (p) or a permanent behavioural response (p0, p1). Unlike models reported in Table B.1,
individual heterogeneity (ˇ) was here never modelled. All detection probability values are given in probability scale. For each scenario and parameter, the mean across the
50  replicates of the Bayesian point estimate (of each posterior statistic) is reported, together with the percentage of 95% posterior intervals that contained the true value of
each  parameter (CI).

Simulated data Model Mean SD 2.5% Median 97.5% CI

p = 0.30 N 188.740 15.653 162.786 187.210 223.394 0.94
p  0.331 0.033 0.268 0.331 0.397 0.84

N  232.200 68.125 156.538 212.280 417.957 1.00
p0 0.290 0.079 0.139 0.291 0.440 0.98
p1 0.340 0.037 0.270 0.339 0.414 0.00

p  = 0.60 N 195.653 4.306 188.348 195.280 204.951 0.80
p  0.610 0.024 0.563 0.611 0.656 0.88

N  196.899 6.574 187.060 195.840 212.385 0.94
p0 0.596 0.045 0.502 0.598 0.678 0.98
p1 0.613 0.029 0.556 0.613 0.669 0.00

p0 = 0.30 N 289.284 44.207 218.631 283.860 391.060 0.26
p1 = 0.15 p 0.189 0.030 0.134 0.188 0.251 0.06

N  224.912 61.326 155.364 208.690 385.627 0.96
p0 0.315 0.078 0.163 0.316 0.460 0.92
p1 0.183 0.030 0.129 0.182 0.245 0.82

p0 = 0.60 N 241.278 13.672 217.718 240.200 271.053 0.02
p1 = 0.30 p 0.382 0.028 0.328 0.382 0.436 0.00

N  198.009 6.672 188.168 197.040 213.992 0.92
p0 0.596 0.045 0.503 0.598 0.678 0.96
p1 0.324 0.028 0.271 0.323 0.379 0.92

by specifying a set of two indicator variables, wk for the kth effect,
having a Bernoulli (0.5) prior distribution:

wk =
{

1 if covariate k is included in the linear predictor
0 if covariate k is not included in the linear predictor

with the expanded linear predictor specified as:

logit(pij) = ˛0 (1 − x1,ij) + w1 ˛1 x1,ij + w2  ̌ x2,i. (A.1)

The four possible models are indexed by the binary sequence
(w1,w2), where w1 and w2 represent the (persistent) behavioural
response and the effect of body size respectively. Posterior model
probabilities, for each of the four possible models, were computed
using the MCMC  samples, and taking the ratio between the number

of iterations giving this model over the total number of iterations
(Table A.1).

The best supported (sex-independent) model, for each of the
two datasets, was then extended with sex-specific parameters. We
selected between two  (sex-dependent) candidate models for each
data set, by expanding the linear predictor with the indicator vari-
able w1. This led to the following model formulations, for individual
i of sex u:

1. ziu ∼ Bernoulli( u);
2. [yi|p(xi)] ∼ Binomial(J, ziu p(xi)), expanded linear predictor for

the June data set: logit(piju) = tr ˛1,u (1 − x1,ij) + ˛1,u x1,ij +
w1  ̌ x2,i + (1 − w1) ˇ1,u x2,i, expanded linear predictor for the
October data set: logit(piju) = w1 ˛1 + (1 − w1) ˛1,u;

Table B.3
Summaries of posterior model probabilities based on Monte Carlo simulation of 50 replicate datasets under four different scenarios and different prior sets. The mean and
median  across the replicates of the Bayesian point estimate (posterior model probability) are reported, together with the proportion of times that the correct model received
the  largest posterior probability (%). Scenarios were simulated as above, always with individual heterogeneity  ̌ = 0.5. The model notation indicates the inclusion, in the
detection function, of a constant term M(.), a term for behavioural response M(b), a term for body size effect M(h), or the latter two together M(b, h). For each scenario, the
correct model is highlighted in bold. Results are related to three different priors for linear predictor coefficients (assumed drawn from N(0, #2) with a varying #2). For further
details see Appendix A.

Simulated data Model #2 = 10 #2 = 100 #2 = 1000

Mean Median % Mean Median % Mean Median %

p = 0.30 M(.) 0.258 0.129 0.26 0.295 0.129 0.30 0.528 0.549 0.56
M(b)  0.056 0.019 0.00 0.045 0.013 0.02 0.024 0.012 0.00
M(h)  0.566 0.694 0.72 0.594 0.714 0.66 0.431 0.414 0.44
M(b,  h) 0.121 0.115 0.02 0.066 0.041 0.02 0.018 0.009 0.00

p  = 0.60 M(.) 0.025 0.001 0.00 0.080 0.001 0.06 0.120 0.000 0.10
M(b)  0.004 0.000 0.00 0.003 0.000 0.00 0.003 0.000 0.00
M(h)  0.851 0.899 0.98 0.874 0.959 0.94 0.853 0.978 0.90
M(b,  h) 0.121 0.079 0.02 0.042 0.026 0.00 0.023 0.009 0.00

p0 = 0.30 M(.) 0.184 0.113 0.20 0.259 0.172 0.30 0.468 0.504 0.54
p1 = 0.15 M(b) 0.137 0.077 0.06 0.109 0.042 0.08 0.091 0.024 0.10

M(h)  0.392 0.343 0.54 0.463 0.400 0.50 0.340 0.184 0.28
M(b,  h) 0.287 0.217 0.20 0.170 0.083 0.12 0.101 0.018 0.08

p0 = 0.60 M(.) 0.000 0.000 0.00 0.002 0.000 0.00 0.005 0.000 0.00
p1 = 0.30 M(b) 0.027 0.000 0.00 0.060 0.000 0.02 0.187 0.001 0.16

M(h)  0.006 0.000 0.00 0.025 0.000 0.00 0.042 0.000 0.02
M(b,  h) 0.966 1.000 1.00 0.913 0.999 0.98 0.766 0.888 0.82
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3. [xi]∼Normal("x, #2
x ).

For the June data set, the two candidate models had in common
a sex-specific detection probability and differed in the coefficient
(sex-dependent or not) for body length effect. Thus, the model with
a sex-independent effect of body size on p occurs if w1 = 1, while a
sex-specific effect of body size is selected if w1 = 0.

In contrast, the competing models for the October data set dif-
fered only in the constant detection probability (sex-specific or not
corresponding with w1 = 0 or w1 = 1; Table A.2).

We tackled the well known issue of sensitivity of posterior
model probabilities to the prior specification (e.g. O’Hara and
Sillanpää, 2009) by repeating the model selection for three differ-
ent priors for all linear predictor coefficients, assumed drawn from
a N(0, #2) with #2 ∈ {10, 100, 1000} (Tables A.1 and A.2).

Posterior model probabilities were calculated from three inde-
pendent Markov chains run 1,000,000 times, with a burn-in of
500,000 and a thinning rate of 20.

The Kuo and Mallick (1998) method, as in Eq. (A.1), was also
applied to the replicate simulated data. Posterior model probabili-
ties (Appendix B; Table B.3) were calculated from one Markov chain
run 150,000 times, with a burn-in of 50,000 and thinned every 50
iterations.

Appendix B. Posterior model parameters and probabilities
for replicated datasets.

Posterior summaries of model parameters and probabilities for
50 replicate simulated datasets. The latter were derived from dif-
ferent detection probabilities (indicated in the first column of the
tables) both in presence (p0, p1) or absence (p) of behavioural
response, but always with individual heterogeneity  ̌ = 0.5, and
starting from a population size N = 200.

Appendix C. Supplementary material

Supplementary data and model script associated with this arti-
cle can be found, in the online version, at http://dx.doi.org/10.1016/
j.ecolmodel.2013.07.015.
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