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The electrophoretic variation at 26 presumptive gene loci was investigated in populations of Pedarcis
wagleriana from Sicily, the Aegadian Islands, and the Aeolian Islands. For interspecific comparison,
samples of the closely related lizard P. sicule from the same geographic area were also used.
Population heterogeneity analyses carried out by the estimation of F-staiistics and Nei's standard
genctic distance, showed a high genetic homogeneity within P. sicula, but a noticcable genetic
differentiation within P. wagleriana. In the latter species, Nei's D ranged from 0 to .212, and this is
because the Aeolian populations were quite distinct from those inhabiting Sicily and the Aegadian
Isiands. Fixed differences identified at three loci (Ck, Ada, Gp-¢) contributed to a relatively high
value of Nei's standard genetic distance between the two population groups (£} = 0.147). This value
is very similar to those found comparing pairs of well-recognized biological species included in the
genera Podarcis and Lacerta. Estimation of the time of evolutionary divergence shows that the Acolian
and Sicilian populations of P. wagleriana have been isolated geographically for a long time {0.7 Myr
according to Nei's formula; 2 Myr according to Sarich’s calibration), indicating evolutionary
divergence at the species level. Based on genetic and biogeographic data, it is suggested the
recognition of full specific status for the Aeolian populations, for which the name P. rafforei comb.,
nova (Aeolian wall lizard) is proposed. Electrophoretic data and comparative species distributions
suggest that (1) Pedarcis sicula recently colonized the Aeolian Islands, and (2) it has competed
successfully with P. rgffonei in this area, greatly reducing the range of the latter and causing the
extinction of most of its populations. In fact, P, sicula is widespread in the Aeolian Archipelago,
while P. raffonet is confined at present to one large island {Vulcano) and three tiny islands
{(Strombolicchio, Scoglio Faraglione, La Canna). This can be considered a classic example of
competitive exclusion of a native form (P. rgffoner) by a species accidentally introduced by man
(P. stcula).
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INTRODUCTION

Podarcis wagleriana Gistel, 1868 is a lacertid lizard inhabiting Sicily (with the
exception of the NE part) and some satellite islands, i.e. the Aegadian Islands
(Levanzo, Favignana, Marettimo), the Stagnone Islands {Isola Grande), and
the Aeolian Islands {Vulcano, Strombolicchio) (Klemmer, 1956; Lanza, 1973;
Béhme 1986; Capula ¢t al, 1987; Capula, 1990). The species is regarded as
polytypic, and according to Capula {1990) it is represented by the following
subspecies: P. w. wagleriana Gistel, 1868 (Sicily, Levanzo, Favignana, and Isola
Grande dello Stagnone); P. w. maretimensis (Klemmer, 1956) (Marettimo);
P w. antoninot  (Mertens, 1959) (Vulcano); P.w. rgffonet (Mertens, 1952)
{(Strombolicchio, near Stromboli).

In Sicily and on some minor Sicilian islands (Aegadian, Stagnone and
Aeolian) Podarcts wagleriana is broadly sympatric with P. sicula (Rafinesque,
1810) {Capula, 1990, 1992). At the morphological level, identification of Podareis
wagleriana and P. sicula in the Sicilian localities where they coexist may be
difficult. In fact, these two lacertid lizards are quite similar in most anatomical
features, differing slightly only in colour pattern (see Lanza, 1968; Arnold &
Burton, 1978), and on some islands (e.g. Vulcano and Marettimo) they are
known to hybridize (Capula, 1993). On the other hand, the detection of
diagnostic electrophoretic loci between the two species allows a correct
identification of all invididuals, either in overlapping areas or in allopatry (see
Capula ef af., 1987; Capula, 1990, 1993).

In the present paper, allozyme variation in Podarcis wagleriana was studied by
means of horizontal starch gel electrophoresis. This investigation highlighted a
substantial genetic differentiation between Sicilian and Aeolian samples. Since
the level of genetic divergence between the studied populations is an indirect
indication of their isolation (see e.g. Sarich, 1977; Sbordoni et al., 1990), the time
clapsed since the presumed geographic isolation was estimated by inferring it
from genetic distance data. Divergence times were then compared with
palaeogeographic evidence.

Here are presented genetic and biogeographic data supporting the hypothesis
that these two population groups, currently regarded as P. wagleriana, are
genetically distinct and have been isolated geographically for a long time,
indicating evolutionary divergence at the species level.

MATERIAL AND METHODS
Sampling

Samples used in this study, including Podarcis wagleriana and the related
P. sicula (the latter employed for interspecific comparison only), were obtained
from 14 localities, including five from Sicily, three from the Aegadian Islands
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Figure 1. Map of Sicily, Aeclian Islands and Aegadian Islands showing localities from which Podarcis
were examined biochemically. (1) Strombolicchio; (2) Salina; (3) Scoglio Faraglione; (4) Filicudi;
(5} La Canna; (6) Vulcano; {7) Linguaglossa; (8) Primosole; (9) Ficuzza; (10) Palermo; (1)
Castellammare del Golfoy, (12) Marettimo; (13} Levanzo; (t4) Favignana. Insert shows location of
the study area.

and six from the Aeolian Islands (Fig. 1). Geographic origin and the number of
specimens analysed per population are indicated in Table 1.

All individuals were collected in the field and transported to the laboratory.
Specimens were anaesthetized with ethyl ether and then dissected. Homogenates
were stored below —70°C.,

TasLe 1. Geographic and collecting data for Podarcis used in the present study
{nomenclature according to current classification)

Sample
Population Species size Localiey
l. P. wagleriana wagleriana 10 Primosole (Sicily)
2, P. wagleriana wagleriana 10 Castellammare del Golfo {Sicily)
3. P. wagleriana wagleriana [0 Palermo (Sicily)
4. P. wagleriana wagleriana g Ficuzza (Sicily)
3. P. wagleriana wagleriana 18 Favignana (Aegadian [slands)
6. P. wagleriana wagleriana 8 Levanzo {Aegadian Islands)
7. P. wagleriana marettimensis 32 Marettimo {Aegadian Istands)
4. P. waogleriana raffone 11 Strombaolicchio (Aeolian Islands)
9. P. wagleriana antoninoi 14 Vulcano (Aeolian Islands)
10. P. sieula cucchiarar 4 La Canna {Aecolian Islands)
1. P. sicula alveariof 5 Scoglio Faraglione (Aeclian Islands)
12, P. sicula sicula 20 Salina {Aeolian Islands)
13. P. sieula sicuia 21 Filicudi {Aeolian Islands}
14, P. sicula sicula 7 Linguaglossa (Sicily)
15. P. steula sicula g Palerma (Sicily)

16. P. sicula sicula 11 Favignana (Aegadian Islands)
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Electrophoresis

Standard horizontal starch gel electrophoresis was performed on leg muscle
tissue, which was crushed in distilled water, Homogenates from single
individuals were absorbed into 5x5 mm pieces of chromatography paper
{Whatman 3 MM) and inserted in 10% Connaught starch gel trays.
Electrophoresis was carried out at 7-9 V/cm for 4-6 h at 5°C. After the run, gels
were sliced in two parts and each slice was stained for a specific enzyme. Gene
products for the following 23 presumptive enzyme loci were analysed: aGpd,
Ldh-1, Ldh-2, Mdh-1, Mdh-2, Me-1, Me-2, Idh-1, Idh-2, 6Pgd, Gapd, Sed, Np, Goi-1,
Got-2, Ck, Ak, Pgm-1, Pgm-2, Ada, Ca-2, Mpi, Gpi (enzymes codes are according to
Richardson, Baverstock & Adams, 1986). In addition, three unidentified non-
enzymatic proteins, i.e. Gp-/, Gp-2, Gp-4, were studied. The buffer systems used
and electrophoretic procedures are given in Tables 2 and 3 respectively. The
staining techniques used were those described by Capula (1990).

The following loci and allele designations were adopted: isozymes were
numbered in order of decreasing mobility from the most anodal; allozymes were
named numerically according to their mobility relative to the commonest one
found in a reference population of P. sicula from Palermo (Sicily), indicated as
100( > 100 = faster mobility; < 100 = slower mobility).

Analysis

The genetic variability of populations was estimated using the following
parameters: observed mean heterozygosity per locus (/{)); expected mean

()

heterozygosity per locus (H,) (unbiased estimate, Nei, 1978); proportion of

polymorphic loci, at the 999, level (P); mean number of alleles per locus (4).
The distribution of genetic variation within and among populations was

TasLE 2. Buffer systems. Analytical grade reagents per litre; pH at room temperature

Buffer system Flectrodes Gel

1. Discontinuous 0.3 M sodium borate, pH 8.2 (18.530 g 0.076 M Tris/0.005 M citric acd,
Tris{citrate (Na) boric acid, 2.40 g NaOH) pH 8.7 (9.20 g Tris, 1.05 g
(Poulik, 1957) monohydrate citric acid)

2. Continuous Tris/eitrate  0.687 M Tris/0.157 M citric acid, 0.023 M Trisf0.005 M citric acid, pH 8
(Selander et af., 1971)  pH 8 (83.2 g Tris, 30 g monchydrate  (2.77 g Tris, 1.10 g monohydrate citric

citric acid) acid)
3. Trisfversene borate 0.21 M Trisf0.15 M boric 0.021 M Trisf0.02 M boric

(Brewer & Sing, 1970) acid/0.006 M EDTA, pH 8 (254 g acid{0.007 M EDTA, pH 8 (2.5 g Tris,
Tris, 9.24 g boric acid, 2.20 g EDTA) 1.24 g boric acid, 0.25 g EDTA)

4. Phosphate/citrate 0.15 M wri-sodium citrate/0.24 M ¢lectrode buffer diluted 1:40, pH 6.3
(Harris, 1966) sodium hydrogen phosphate, pH 6.3
(44.11 g sodium citrate, 33.12 ¢
NaH,PO,)
5. Tris/maleate {modified 0.01 M Tris/0.1 M maleic electrode buffer diluted 1:10, pH 7.4
from Brewer & Sing, acid/0.01 M EDTA/J0.G15
1970} MgClL/0.125 M NaOH, pH 7.2

(12.11 g Tris, 11.61 g maleic acid,
372 g EDTA, 203 g MgCl,, 5 ¢
NaOH)
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TabLE 3. Enzymatic and non-enzymatic proteins examined and electrophoretic conditions
employed. Enzymes are arranged by Enzyme Commission Number (EG)

Migration

+ =anodal Buffer Time
Protein — = cathodal systerm Vjem  (h) References
Glycerol-3-phosphate dehydrogenase + 4 8 6 Avyala # al., 1972
«GPD (EC 1.1.1.8)
Lactate dehydrogenase + 5 7 6 Brewer & Sing, 1970
LDH (EC 1.1.1.27)
Malate dehydrogenase + 4 8 5 Shaw & Prasad, 1970
MDH (EC 1.1.1.37}
Malic enzyme ME (EC 1.1.1.40) + 2 8 6 Avyala ¢t al, 1972
Isocitrate dehydrogenase + 4 8 5 Shaw & Prasad, 1970
IDH (EC 1.1.1.42)
6-Phosphogluconate dehydrogenase + 4 8 6 Shaw & Prasad, 1970
6PGD {EC 1.1.1.44)
Glyceraldchyde-3-phosphate + 3 7 6  Avala et al, 1972
dehydrogenase GAPD (EC 1.2.1.12)
Superoxide dismutase SOD (EC 1.15.1.1) + 2 8 5 Selander et al., 1971
Purine nucteoside phosphorylase + 3 8 5 Harris & Hopkinson, 1976
NP (EC 2.4.2.1)
Glutamate-oxaloacetate transaminase + 4 9 6 Selander ¢ af,, 1971
GOT (EC 26.1.1)
Creatine kinase CK (EC 2.7.3.2) + 2 8 5 Avala ¢ al., 1972
Adenylate kinase AK (EC 2.7.4.3) + 2 8 5 Avyala ¢ al., 1972
Phosphoglucomutase PGM (EC 2.7.5.1) + 5 8 6 Brewer & Sing, 1970
Adcnosine deaminase ADA (EC 3.5.4.4) + 2 7 4 Harns & Hopkinson, 1976
Carbonate dehydratase CA (EC 4.2.1.1} + 3 8 4 Harris & Hopkinson, 1976
Mannose phosphate isomerase + 3 8 4 Harris & Hopkinson, 1976
MPI (EC 5.3.1.8)
Glucosc-phosphate isomerase - 4 8 6 Selander e al., 1971
GPI {(EC 5.3.1.9)
General proteins GP + 1 8 4 Scowt & McClelland, 1975

assessed using Wright's F-statistics {Wright, 1963), The three F-statistics are
interrelated so that

FST = (ET_ES)/(I "'Es)

F¢ and F; are measures of deviation from Hardy-Weinberg proportions within
subdivisions and the total sample respectively. Fyp is a measure of genetic
differentiation among subdivisions. Statistical significance of Fy; was tested by
the x*-test: x> = 2N Fp(k—1), with (k—1){s—1) degrees of freedom, where £ is
the number of alieles and s is the number of subdivisions (Workman &
Niswander, 1970).

The genetic relationships among the studied populations were evaluated using
Nei’s (1972) standard genetic identity (f) and standard genetic distance (D). We
did not use Nei’s (1978) unbiased genetic identity and distance (/ and D
modified for small samples) because we did not score a sufficient number of gene
loci (see Nei, 1978). All genetic variability, F-statistics, and genetic distance
measures were calculated by the computer program BIOSYS-1 (Swofford &
Selander, 1981).

Genotype data at 26 electrophoretic loci were analysed for rates of gene flow
following the Slatkin’s (1985} model. To estimate gene flow (Nm) we used the
Slatkin’s formula:

In[p(1)] = —0.505 In (Nm) — 2.44
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Because the constants in the above formula are for sample sizes of 25, values of
Nm were adjusted for sample size following Slatkin (1985).

Estimation of phenetic relationships among populations was obtained by
generating phenograms of all samples by means of UPGMA cluster analysis
based on the matrix of Nei’s genetic distances {Sneath & Sokal, 1973).

Nonparametric multidimensional scaling (MDS), generated on the basis of
Rogers’ {1972) genetic distances, which are metrics, was performed in order to
obtain the ordination of populations in a multidimensional space (Nei’s genetic
distance measure is not a metric, i.e. it violates the triangle inequality, and thus
cannot be interpreted as a measure of evolutionary path length; see Rogers,
1984). This multivariate ordination procedure constructs a configuration of
points in the Euclidean space, which reflects the relationships between a set of
populations (Dunn & Everitt, 1982). MDS requires no more than ordinal
relations in the original distance matrix, maintaining a close agreement with the
initial data matrix (Shepard, 1962). A special advantage of the nonparametric
MDS method is that it seerms better than principal component analysis (PCA) in
giving balance between the large intercluster distances and the fine differences
between members of a given cluster (Rohlf, 1970}.

The time of evolutionary divergence between taxa was estimated from Nei’s
(1972) genetic distance data using (1) Nei’s (1975) formula: { = 5 x 10° D, which
is based on the assumption that for small values of D(D < 1) genetic distances
seem linearly related to time, and (2) Sarich’s (1977) calibration (corrected by
Maxson & Maxson, 1979): 1D = 14 x 10° years, which calibrates divergence
times according to the different contribution of the gene loci studied (fast and
slow evolving loci) to the genetic distance estimates. Both Nei’s formula and
Sarich’s calibration are usually used to test the ‘molecular clock hypothesis’,
being rough estimates of the time required by two taxa to undergo divergent
evolution (see e.g. Thorpe, 1982). Isolation times estimated by these two
methods were then compared with palaeogeographic data in order to assess
which of the predicted divergence times were roughly in accord with available
geological evidence.

RESULTS

Of the 26 presumptive gene loci analysed, eight (319%,) were found
monomorphic and fixed for the same allele in all the studied samples {(Ldh-2,
Mdh-1, Mdh-2, Sod, Np, Got-2, Ak, Pgm-1). The allele frequencies at the other 18
variable loci are given in Table 4. Four loci (15%) were locally (=6
populations) and strongly polymorphic (Me-7, [dh-1, Ca-2, Mpi); eight loci
(319%,) were locally (< 2 populations) and in most cases weakly polymorphic
(eGpd, Ldh-1, Me-2, Idh-2, 6Pgd, Pgm-2, Ada, Gpi).

As to the diagnostic loci (at the 999, level} between P. sicula and P. wagleriana,
a very particular situation was found. Six loci (239%,) displayved fixation of
alternative alleles between P. sicula and Sicilian and Aegadian populations of
P. wagleriana (Gapd, Got-1, Ck, Gp-1, Gp-2, Gp-4), while only four out of these loci,
i.e. Gapd, Got-1, Gp-1, Gp-2, were found to be fixed for alternative alleles between
P. sicula and Aeolian samples of P. wagleriana, these latter apparently sharing
with P, sicula the same electrophoretic allele at the Ct and Gp-4 loci (see
Table 4). On the other hand, the fdh-1 locus displayed fixation of alternative
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alleles between P. sicula (Idh-1'"") and P. wagleriana from the Aecolian Islands
(Idr-1'"%), while it showed a high polymorphism in Sicilian and Aegadian
samples of P. wagleriana. In these samples, Jdh-1'" was found at high frequencies
(> 0.65, not including the sample from Favignana), while /dh-1""" appeared
with lower frequencies { < 0.35, not including the sample from Favignana).

Unexpectedly, three loci (Ck, Ada, Gp-4) showed fixation of alternative alleles
between populations of P. wagleriana from the Aeolian Islands and P. wagleriana
populations from Sicily and the Aegadian Islands. Moreover, populations of
P. wagleriana from the Aeolian Islands were characterized by a unique
electrophoretic allele (Ca-2''%), present at a noticeable frequency (0.17), and, in
one case (sample from Strombeolicchio), showed fixation of another unique allele
(Pgm-2""). These results clearly indicate that there is a noticeable level of genetic
differentiation between Aeolian and Sicilian populations of P. wagleriana.

Surprisingly, samples from La Canna and Scoglio Faraglione (Aeolian
Islands), though currently assigned to P. sicula (see Mertens, 1955; Di Palma,
1980), were found to be genetically highly differentiated from this latter species,
while being very close to the Aeolian populations of P. wagleriana
(Strombolicchio and Vulcano), with almost identical allele frequencies at 25
(969%,) out of 26 loci (see Table 4},

Deviations from Hardy-Weinberg equilibrium owing to heterozygote
deficiencies were found in the following populations (in parentheses) and loci:
Castellammare del Golfo (2) Ca-2 (P < 0.01); Favignana (5), Me-1 (P = 0.02);
Filicudi (13), Mpi (P < 0.002).

Genelic variability

The considered genetic variability parameters (f{,, H, P, A) are given in
Table 5. The levels of polymorphism (P) and heterozygosity (#,) detected in

TasLe 5. Genetic variability parameters in Podarcis populations from Sicily,
Aeolian Islands, and Aegadian Islands. Mssl = mean sample size per locus;
A = mean number of alleles per locus; P = mean proportion of polymorphic
loci;  H, = observed mean  heterozygosity; M, = expected mean
heterozygosity (unbiased estimate; Nei, 1978) (S.E. = standard error)

Population Maslt A P H, (S.E.) H, (S.E.)
1 8.0 1.0 38 0006  (0.006) 0.006 (0.006)
2. 9.8 1.2 19.2 0.063  (0.031) 0.058 {0.027)
3. 9.4 1.3 26.9 0.060  (0.029) 0.058 {0.02%)
4, 7.6 1.1 11.5 0.021 {0.012)  0.020 {0.012)
5. 15.0 1.3 19.2 0076  (0.033) 0078 {0.034)
6. 6.6 1.1 11.5 0014 (0.008) 0.022 {0.014)
7. 28.3 12 192 0.057  {0.026) 0.054  {0.025)
8. 9.4 1.1 7.7 0017  (0013) 0016 (0.012)
9. 12.1 1.1 7.7 0.018  {0.014) 0016  (0.012)
10. 4.0 1.0 0.0 0.000 0.000
11 4.7 1.0 3.8 0.008 (0.008) 0.008  (0.008)
12 15.7 1.t 1.5 0.021 (.014) 0.024  (0.018)
I3 16.5 1.t 1.5 0.036  (0.025) 0.036 (0.022)
I+ 6.5 1.0 0.0 0.000 0.000
15 7.3 1.1 7.7 0.010  (0.007)y 0010 (0.007)
16 9.6 1.0 0.0 0.000 0.000
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P. wagleriana populations from Sicily (P = 0.15; H = 0.037) and the Aegadian
Islands (P = 0.17; H, = 0.049) were similar both to the average ones calculated
by Nevo (1978) for 17 species of reptiles (P = 0.22; H, = 0.047), and the average
ones calculated by Capula (1990) for nine species of Podarcis (P=0.13; H, =
0.053). The Aeolian samples of P. wagleriana showed noticeably lower values of
polymorphism and heterozygosity (P = 0.05; H, = 0.011). The severe reduction
in genetic variability pointed out in these samples could be due either to genetic
drift phenomena or strong directional selection, as supported by the fact that
three out of four populations of P. wagleriana known to occur in the Aeolian
Archipelago inhabit tiny volcanic islands (Strombolicchio, Scoglio Faraglione,
La Canna), each characterized by a very limited area (< 0.02 km?).
Unfortunately, the present data do not permit us to distinguish between the drift
and selection hypotheses.

The levels of polymorphism and heterozygosity are below the mean for the
species of reptiles analysed by Nevo {1978) and Capula (1990} (see above) also
in the samples of P. sicula (P =0.06; H = 0.013). In the case of P. sicula
populations inhabiting satellite islands, however, the observed low genetic
variability could be due to founder effects (semsu Mayr, 1982; Barton &
Charlesworth, 1984}, the Acolian and Aecgadian populations of the species
probably having originated from episodes of accidental anthropogenic
introduction in protohistorical or historical times (Lanza, 1973; Capula et al.,
1987; Capula, 1990} (see Discussion).

Population heterogeneity

The mean Fy among Sicilian and Aegadian populations of Podareis wagleriana
was 0.153 (Table 6). Five of the 10 single-locus Fy values were statistically
significant, suggesting some genetic differentiation among populations.
However, it must be stressed that fdh-7 had a much higher f5, than all other loci.
If this locus is removed because of possible scoring errors, the mean Fyp reduces
to 0.113. Mean Fy; values are also given for all P. wagleriana samples and the
Total (P. wagleriana plus P. sicula) (Table 6). Adding the Aeolian samples of
P. wagleriana increases the Fy, to a very high level {(.625), suggesting that the
Aeolian populations are highly differentiated from both the Sicilian and
Aegadian ones. Including the populations of P. sicula increases Fgp (0.872)
further, indicating that the latter species is genetically quite differentiated from
P. wagleriana. Fig values remain low regardless of which populations are included,
presumably because Hardy-Weinberg proportions are maintained within
populations by random mating.

The values of Nei’s genetic identity and genetic distance for each pairwise
comparison are shown in Table 7. A high genetic homogeneity was found within
P. sicula. The values of Nei's standard genetic distance observed between the
populations of this species ranged from D=0 to D =0.035 (average D=
0.015). The Aecolian populations of P. sicule (Filicudi and Salina) were
genetically very similar to each other and to those from Sicily and the Aegadian
Islands (average D = 0.012).

As reported above, the lizards from Scoglio Faraglione and La Canna, though
currently assigned to P. sicula (Henle & Klaver, 1986), were found to be
genetically highly differentiated from all other populations of this species
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TasLe 6. Summary of F-statistics at ten loci for Podarcis
wagleriana populations from Sicily and Aegadian Islands.
The mean across all loci is also given for P. wagleriana as a
whole (S = Sicilian and Aegadian populations; A = Aeolian
populations, which in the present paper were recognized as
P. raffoned), and Total (all Podarcis samples studied).
Asterisks denote statistical significance for Fg; as determined
by the y-test {see text). *P < 0.05 **P <00y

*xx P < 0,001
Locus Hs Fr by
aGpd —0.067 —0.009 0.054
Ldk-1 —0.053 —0.007 0.043
Me-1 0.160 0.314 0.182%**
Me-2 —0.091 —0.012 0.072*
Idh-1 —0.027 0.219 0.24(% **
1dh-2 —0.060 -~0.01% 0.042
6Pgd —0.053 —0.007 0.043
Pgm-2 —0.053 —0.007 0.043
Ca-2 —0.046 0.062 0.103***
Mpi —0.237 0.123 0.092%**
MEAN —0.052 0.108 0.153
MEAN for:
P. wagleriana —0.064 0.601 0.625
(S+A)
Total —(.052 0.866 0.872

{(average 2 = 0.321). These two samples shared the same allele frequencies (see
Table 4), and were very close both to P. wagleriane antoninei from Vulcano and
P. wagleriana raffonetr from Strombolicchio {average D = 0.020).

Within P. wagleriana, high values of genetic distance were found, D ranging
from 0 to 0.212 (average D = 0.080). This is because the Aeolian populations of
the Sicihan wall lizard {(including those from Scoglio Faraglione and La Canna,

TapLe 7. Values of Nei’s {1972) standard genetic identity (above the diagonal} and standard
genetic distance (below the diagonal} among populations of Pedarcis from Sicily, Aeolian Islands,
and Aegadian Islands

Popula-
tion I. 2. 3 4. 5. 6. 7. 8. 9. 10. 11, 120 13 14, 15, 16,
1. — 0.993 0.994 0.999 0.971 0.999 0.994 0.843 0.882 0.884 0.883 0.652 0.684 0.656 0.620 0.656
2. 0.007 — (.996 (0.994 0.989 0.996 0.998 0.833 0.873 0.873 0.873 0.669 0.698 0.669 0.643 0.669
3. 0.006 0.005 — 0.996 0.98]1 0.995 0.997 0.836 0.873 (.875 0.874 0.663 0.689 0.658 0.646 0.658
4. 0.001 0.006 0.004 — 0.972 0.997 (0.995 0.842 0.881 (.883 0.882 0.652 0.682 0.653 0.626 0.653
5. 0.030 0.011 0.019 0.029 — 0.979 0.987 0.809 0.848 0.849 0.849 0.697 0.723 0.697 0.675 0.657
6. 0.001 0.004 0,005 0.003 (.032 — 0.996 0.841 0.880 0.882 0.881 0.659 0.692 0.663 0.627 0.663
7. 0,006 0.002 0.003 0.005 ¢.013 0.004 — 0.835 0.874 0.875 0.875 0.667 (0.695 0,665 0.645 0.665
8. 0.171 0.183 0.179 0.172 0.212 0,173 0.181 — 0.961 0.960 0.961 0.686 0.704 0.689 0.655 0.689
9. 0.126 0.136 0.136 0.127 0.164 0.128 0.135 0.040 — 0.999 1.000 0.725 0.743 0.727 0.692 0.727
10. 0.123 0.135 0.134 0.125 0.164 0.126 0.134 0.041 0.001 1.000 0.728 0.746 0.731 0.695 0.731
1L 0.124 0.135 0.134 0.126 0.164 0.126 0.134 0.040 0.000 0.000 — 0727 0.745 0.729 0.694 0.729
12. 0.428 0.403 0.411 0.428 0.360 0.416 0.406 0.377 0.322 0.317 0.31% — 0.992 0.996 0.985 (.996
13. 0.379 0.359 0.372 0.383 0.324 0.368 0.364 0.352 0.298 0.293 0.295 0.008 — 0,993 0.965 0.993
14. 0.422 0.403 0.418 0.426 0.361 0.411 0.408 (.373 0.318 0.314 0.315 0.004 0.007 — (.966 1.000
15. 0.478 0.441 0.437 0.469 0.394 0.467 0.439 0.423 0.369 0.363 0.365 0.015 0.035 0.035 — 0.966

16. 0.422 0,403 0.418 0.426 0.361 0.411 0.408 (.373 0.318 0.3t4 0.315 0.004 0.007 0.000 0.035 —
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which were up to now considered as belonging to P. sicula), were quite
differentiated from those inhabiting Sicily and the Aegadian Islands. Fixed
differences identified at three loci {Ck, Ada, Gp-4) contributed to an average Nei’s
genetic distance of 0.147 between these population groups, indicating their
reproductive isolation.

On the other hand, the samples of P. wagleriane from the Aegadian Islands
were genetically very similar to the Sicilian ones, the genetic distance values
found between these two population groups being quite low (average D = 0.010}
and similar to those often detected within the genus Podgrcis among local
populations of the same species (see e.g. Mayer, 1981; Capula, 1990). Very low
levels of genetic differentiation were also pointed out among the Sicilian samples
of P. wagleriana, D ranging from 0.001 to 0.007.

As to the interspecific genetic distances, the value of Nei’s genetic distance was
relatively high when comparing P. sicula with the total sample of P. wagleriana
(D = 0.384). However, it must be stressed that when comparisons were made
considering two population groups of P. wagleriana, P. sicula was shown to be
genetically nearer to the Aeolian populations of P. wagleriana {average D =
0.337) than to the Sicilian and Aegadian ones (average D = 0.406). This is
because (1) fixation of alternative alleles between the Acolian form of
P. wagleriana and P. sicula occurred at four instead of six electrophoretic loci
found to be diagnostic between Siculo-Aegadian populations of P. wagleriana and
P. sicula, and (2) there was probably a limited introgression between the two
lizards on the Aeolian Islands, as pointed out by Capula (1993).

Gene flow

The rate of gene flow (Nm) was calculated at various levels, from within each
of the two major groups evidenced by genetic heterogeneity analysis to the total
sample of P. wagleriana. The mean Nm among the Sicilian samples of Podareis
waglertana was 4.30 [p(1} = 0.068; Mean N = 9.5], while the mean Nm among
Sicilian and Aegadian samples was 3.47 [p(1) = 0.063; Mean N = 13.71]. These
values are higher than that estimated by Slatkin (1985) for insular populations of
Podarcis melisellensis (Nm = 1.9), and appear to be more than sufficient to prevent
allelic fixation in different populations. As would be expected on the basis of
both F-statistics and genetic distances data, including populations of the Sicilian
wall lizard from the Aeolian Islands dramatically reduces Nm (0.50) [p(l) =
0.181; Mean N = 11.82], thus indicating very little gene flow between Aeolian
and the other populations of P. wagleriana. However, caution should be taken
when interpreting or comparing Nm values obtained by the method empioyed in
our study (see Slatkin, 1985). In fact, because accuracy at this scale is reduced
under the model used, we can say little about the actual magnitude of gene flow
other than that it is very low.

Cluster analysis and multidimensional scaling ordination

The UPGMA clustering procedure revealed three main clusters in the
phenogram constructed on the basis of the matrix of Nel’s standard genetic
distances (Fig. 2). Cluster A contains the Sicilian and Aegadian populations of
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Figure 2. Phenogram generated by UPGMA cluster analysis based on Nei’s (1972) standard genetic
distances among Pedarcis populations from Sicily, Aeolian Islands, and Aegadian Islands
{Cophenetic correlation = 0.978). For geographic origin of populations see Table 1.

P. wagleriana, cluster B contains only P. wagleriana samples from the Aeolian
Islands, and cluster C includes all five P. sicula populations. Within cluster B
should be noted the existence of two subclusters, one including the closely
grouped samples from Vulcano, Scoglio Faraglione and La Ganna, the other
containing only the sample from Strombolicchio, which is in fact characterized
by a fixed electrophoretic allele {Pgm-2'") not found in the other samples.
Cophenetic correlation between the matrix of genetic distances and the derived
phenogram was rather high (0.978).

The ordination of populations by multidimensional scaling (MDS) is shown in
Fig. 3. Due to the very low value of stress found (0.0096), indicating a high
degree of concordance of dissimilarities and distances (the stress function
measures the extent to which the distances between points of the graphic
representation are monotonic with the observed dissimilarities), only graphical
representation on the planes defined by the two first dimensions was made. The
results of the MDDS ordination were remarkably similar to those obtained by the
UPGMA clustering, the same three major groups (A, B, C) being clearly defined.
The first coordinate axis separates (1) the populations of P. sicula from those of
P, wagleriana, and (2) the Aeolian populations of P. wagleriana from the Sicihan
and Aegadian ones; the second axis clearly distinguishes the Aeolian populations
of P. wagleriana from the Sicilian and Aegadian ones.



190 M. CAPULA

2.0
o™
Z
o 1.0 A
2 c O
i 960
S 00 @ 20
(a] B
0 009
-1.0-
_2.0- 1 L] T T T
-20 -10 0.0 10 20
DIMENSION 1

Figure 3. Bidimensional multidimensional scaling ordination of populations based on Rogers’ (1972}
genctic distances among Pedarcis populations from Sicily, Acolian Islands, and Aegadian Tslands.
Stress of final configuration = 0.0096.

DISCUSSION
Extent of divergence belween populations

The results of our analyses on genetic heterogeneity and gene flow in
P. wagleriana are consistent with the preliminary electrophoretic investigations
previously carried out on the species (Capula, Nascetti & Bullini, 1988; Capula,
1990}, and support the evidence that the Aeolian populations are genetically
independent from those inhabiting Sicily and the Aegadian Tslands.

Interspecific genetic differentiation has not been widely investigated within
the Lacertidae. However, electrophoretically determined estimates of Nei's
genetic distances are reported for some species of the genera Podarcis and Lacerta.
In the genus Podarcis, Nei’s D ranges from 0.07 (between P. faurica and
P. melisellensis) to 0.65 (between P. filfolensis and P. hispanica) (Capula ef al., 1988;
Capula, 1990). In the related genus Lacerta, Nei’s D ranges from 0.13 (between
L. oxycephala and L. graeca) to 1.70 (between L. bedriagae and L. viridis} (Mayer &
Tiedemann, 1982; Busack, 1987). Although caution should be exercised in the
interpretation of Nei’s (1972) genetic distances, as genetic distances computed
from differing numbers of electrophoretic loci among representatives of different
taxa may not be directly comparable, they can provide an indication of the
range of values to be expected between biological species within a genus (see e.g.
Avise, 1974; Buth, 1984). Thus, the very low value of Nei's standard genetic
distance found between the Aegadian and Sicilian samples of P. wagleriana
(D =0.010) suggests that these populations were geographically isolated in
geologically recent times and represent a single systematic, as well as genetic,
unit. The time of genetic divergence estimated on the basis of the D value
according to Nei's {1975) formula seems to go back to the Upper Pleistocene
(0.05 Myr); this is in good agreement with palacogeographic evidence and
would confirm the hypothesis of a recent isolation of the two population groups.
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In fact, it is well known that at least two islands of the Aegadian Archipelago,
i.e. Favignana and Levanzo, were linked several times to Sicily either during the
Middle Pleistocene (e.g. between the Calabrian and Sicilian periods) (Ruggieri,
1973} or during the Upper Pleistocene (Wiirm), when they were colonized by
large continental mammals from the main island (Malatesta, 1957; Caloi,
Kotsakis & Palombo, 1988).

Conversely, the value of Nel’s genetic distance found between Aecolian and
Sicilian samples of P. wagleriana (D = 0.147) falls (1) above that normally
encountered for conspecific populations [D < 0.105 (I > 0.90); Thorpe, 1983],
and (2) into the range obtained from comparisons between well recognized
biological species of the genera Podarcis (e.g. Nei’s D2 = 0,141 between P. sicula
and P. muralis; 24 gene loci scored) (Capula, 1990), and Laceria (e.g. Nei’s
D =0.13 between L. oxycephala and L. graeca; 16 gene locl scored} (Mayer &
Tiedemann, 1982}, revealing marked genetic differentiation between
populations. This result is supported by the analyses of F-statistics and rates of
gene flow, and suggests that the Aeolian and Sicilian populations of the taxon
currently regarded as P. wagleriana belong to closely related sibling species,
which probably diverged from a common ancestor. On the basis of (1} the
peculiar  geographic distribution, (2) the morphological and chromatic
characteristics (see Mertens, 1952, 1955; Arnold & Burton, 1978; Di Palma,
1980), (3) the genetic divergence among populations as indicated by fixed allelic
differences, genetic distance data, and fixation index, we suggest the recognition
of full specific status for the Aeolian P. wagleriana, for which the name Podarcis
raffonei (Mertens, 1952) (Aeolian wall lizard) is proposed. The present range and
proposed formal renaming of the four known subspecies of the Aeolian wall
lizard would be as follows: P. 7. raffonei {Mertens, 1952) {Strombolicchio, 1.6 km
NE of Stromboli); P. r. alvearioi (Mertens, 1955) (Scoglio Faraglione, 0.3 km W
of Salina); P. r. cucchiarai Di Palma, 1980 (La Canna, 1.5 km W of Filicudi);
P. r. antoninoi {Mertens, 1955} (Vulcano} (Fig. 4). The range of P. wagleriana
would appear therefore to be more limited than previously supposed, being
apparently restricted to Sicily, Favignana, Levanzo, Isola Grande dello
Stagnone (P. w. wagleriana), and Marettimo (P, w. mareitimensis).

Mechanisms of population differentiation

The Acolian Archipelago is made up of seven large islands (= 3.38 km*) and
several islets ( < 0.29 km®) of volcanic origin, which are separated from Sicily by
a deep and wide sea channel (sea channel width ranges from 22 km—geographic
distance between Vulcano Island and Capo di Milazzo, NE Sicily—to 80 km
(geographic distance between Alicudi Island and Capo di Milazzo, NE Sicily)).
On the basis of the available geological data, it seems that the Aeolian Islands
emerged during the Pleistocene and were always separate from Sicily (Alicudi,
Panarea, and portions of Salina and Lipari date back to the Lower-Middle
Pleistocene; Vulcano, Stromboli, and the remaining portions of Salina and
Lipari date back from the Upper Pleistocene to recent times) (Sacchi, 1961,
Ruggieri, 1973; Barberi ef al., 1974; Rosi, 1980). However, according to some
biogeographic evidence (see e.g. Lanza, 1973; Messina, 1984; Piantelli ef al.,
1990), it is possible that these volcanic islands began to rise up at the end of the
Pliocene, before or contemporaneously with the marine regression that caused
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Figure 4. Nei’s (1972} standard genetic distances among populations of Podarcis sicula (A-C),
P. raffonet (D-G), and P. wagleriana (H) from the Aeclian Islands and NE Sicily. A = Filicudi;
B = Lingunaglossa; C = Salina; D = Strombolicehio; £ = Scoglio Faraghione; F = Vuleano, G = La
Canna; H = Primosole. Insert shows location of the study area.

the complete emersion of the continental plate between the Aeolian volcanic arc
and Sicily (Furon, 1950; Pasa, 1953). In any case, during the Pleistocene they
were probably much larger than at present, and could have been connected, for
short periods at least, to Sictly and southern Italian peninsula (Pasa, 1953).
Zoological investigations carried out in the Acolian Archipelago {see e.g.
Messina, 1984; Piantelli et al., 1990) would confirm this hypothesis, indicating
that the Aeolian fauna is characterized (1) by recent {or very recent} immigrant
taxa, i.e. taxa whose occurrence on the islands is best explained by rafting or
anthropogenic introduction (e.g. most of the terrestrial malacofauna), and (2)
by much more ancient immigrant taxa, i.e. endemic taxa {palaeotyrrhenian
elements) which seem to have colonized the Aeclian Islands prior to or during
the Pleistocene (e.g. the spider Harpactea aeoliensis and the beetle Eclobius
aeoliensis).
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Although the reconstruction of past colonization and evolutionary events is
speculative, based on genetic and biogeographic evidence, at least three
scenarios can be considered: the colonization process and evolution of P. raffonet,
the possibility of human introduction of P. sicula in the Aeolian Islands; the
process of competitive exclusion of P. raffone by P. sicula.

The ancestor of P. raffonei could have reached the Aeolian area from Sicily
during the Roman Regression {Mindel glaciation, Pleistocene), when, according
to Pasa (1953), the sea channel between the Aeolian Islands and Sicily closed or
was greatly reduced and these insular systems were possibly linked or very close.
Due to the subsequent deepening of the sea channel caused both by marine
erosion and rising sea level {end of Mindel glaciation), the Aeolian populations
remained isolated from the Sicilian ones, and the resulting physical separation
could have been responsible for their genetic divergence. This hypothesis is in
agreement with the time of evolutionary divergence estimated according to Nei’s
(1975) formula, which seems to go back to the Middle Pleistocene (0.7 Myr). On
the other hand, it must be stressed that the time of geographic isolation
estimated by using Sarich’s (1977) calibration {corrected by Maxson & Maxson,
1979} would suggest older divergence times, putting back the disjunction events
to 2 Myr (Late Pliocene or Early Pleistocene}. However in the case of divergence
times estimated by using Sarich’s (1977) calibration, caution must be used, as
(1) this method can produce misleading results due to the fact that genetic
distances must be calibrated on the particular ‘mix’ of fast and slow evolving loci
used (Sarich, 1977), and (2) it is now clear that mean rates of amino acid
substitution are broadly similar for most proteins and there is no evidence for
any sort of bimodality in distribution {see e.g. Skibinski & Ward, 1982; Thorpe,
1989).

The colonization of the Aeolian Islands by Podarcis sicula would be much more
recent, as indicated by the very low genetic divergence found hetween the
Aeolian and the Sicilian samples of the species. According to Capula ef al. (1987)
and Capula (1990, 1992, 1993), which based their conclusions both on genetic
and ecological data, the occurrence of P. sicufa in the Aeolian Archipelago is
probably due to accidental anthropogenic introduction. This is indirectly
supported by the evidence that (1) P. sicula is a lacertid lizard of broad
ecological tolerance (see Nevo ef al., 1972), and (2} it is known to have been
introduced by man on several Mediterranean islands, e.g. Marettimo, Minorca,
Tuscan Archipelago, Adriatic islands (Taddei, 1949; Lanza, 1973; Gorman ¢t al.,
1975; Caloi et al., 1988; Corti, Capula & Nascetti, 1989). Based on these data,
P. sicula would be a faunistic element which has been only recently established
on the Aecolian Islands, while P. raffonei would be a Pleistocene immigrant
(palacotyrrhenian element), 1.e. the native lacertid lizard in the Archipelago,
though presently confined to a few islands.

The resuits of electrophoretic investigations and comparative species
distributions in the Aeolian Islands show that the recent invader P. sicula must
have competed successfully with P. raffoner, greatly reducing the range of the
latter and probably causing the extinction of most of its populations (Capula e
al., 1987; Capula, 1992). As a consequence, the Aeolian wall lizard is presently
confined to Vulcano, where it occurs sympatrically with P. sicula, and to three
tiny islands (Strombolicchio, Scoglio Faraglione, La Canna), where it is the only
Podarcis species (see Tig. 4). The above mentioned islands can be considered
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fringing islands, i.e. small islands that have been probably disconnected by
custatic sea level rise from the adjacent larger island (respectively Stromboli,
Salina, Filicudi) within the recent geological past. This indicates that: (1)
F. raffonei occurred also on Stromboli, Salina and Filicudi; (2) P. raffonet has
become extinct on the large islands, possibly due to competition with the more
opportunistic P. sicula; (3) P. raffonei was able to survive only on those small
islands which were not colonized by P. sicula.

According to our observations, each of the tiny islands inhabited by the
Aeolian wall lizard supports a small number of lizards. On the other hand, a
rough estimate of population size based on a three-year collecting experience at
Vulcano—which is the only large Acolian island (21.2 km?) at present known to
be inhabited by P. raffonei—indicates that the species is represented there by a
very small number of individuals. On this island, the Aeolian wall lizard appears
to have become wvery rare in historical times, nearly reaching extinction,
probably due to hybridization (a high number of ¥, hybrids P. sicula x P. raffone
were detected on Vulcano by Capula (1993)) and competition with the very
abundant P. sicula (Capula, 1990, 1992). Documented cases of native lizard
species reduced to extinction by the introduction of a reptilian competitor seem
to be extremely rare (e.g. Case & Bolger, 1991). However, the case of the
Aeolian Podarcis certainly can be considered a classic example of competitive
exclusion of a native form by a species introduced by man.
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