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ABSTRACT
The knowledge of a species’ population structure is essential for the development
of adequate conservation actions as well as for the understanding of its evolution.
The population structure is unknown in all species of the Genus Psammodromus,
including the Western Sand Racer (Psammodromus occidentalis; a recently described
species), the Edward’s Sand Racer (P. edwardsianus) and the Spanish Sand Racer
(P. hispanicus). In this article, the genetic variability and population structure of
Psammodromus edwardsianus, P. hispanicus, and P. occidentalis were studied in the
Iberian Peninsula covering their natural geographic distribution. Mitochondrial
DNA showed genetically different units in all species with higher genetic variability
in their southern populations (latitudinal variation). Genetic differentiation
was different among species and contrasted to those of species with similar
characteristics. Our results therefore highlight the importance of species-specific
studies analysing population structure.
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Psammodromus hispanicus, Psammodromus occidentalis

INTRODUCTION
The knowledge of the population structure of a species is basic for its efficient conservation

and management as well as for the understanding of subjacent evolutionary processes

implicated on it (Millar & Libby, 1991). Differences in genetic diversity can have

substantial effects on ecological processes (Hughes et al., 2008) as well as on the success

of conservation; thus, studies analysing the congruence of population structure among

similar species are required to understand their predictability. Genetic studies are of

particular interest for evaluating the conservation status of newly described species’ in a

quick and robust way because genetic differentiation is a crucial factor shaping a species’

population structure (Avise, 2000). Moreover, genetic diversity within local populations

is essential to ensure its adaptive and evolutionary flexibility and the long-term survival

of the species (Templeton, 1991). For this reason, the maintenance of genetic diversity is
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one of the most important aims of species conservation (Barrett & Kohn, 1991), and the

identification of hotspots of genetic diversity is one of the first steps in the development of

management actions (Fleishman et al., 2002).

The three species of the Genus Psammodromus P. occidentalis, P. edwardsianus and

P. hispanicus (the Western Sand Racer, the Edward’s Sand Racer, and the Spanish Sand

Racer, respectively) have been recently described as new lizard species given their old

divergence and their genetic, phenotypic, and ecological niche differences (Fitze et al.,

2012). P. occidentalis diverged 8.3 (2.9–14.7) Mya from the ancestor of P. edwardsianus

and P. hispanicus, and the latter diverged 4.8 (1.5–8.7) Mya (Fitze et al., 2011). The

natural distribution of these three species ranges from southern Spain to southern

France and ecological niche modelling showed that suitable habitat of P. occidentalis and

P. edwardsianus overlap over vast areas, while the other species, P. hispanicus, inhabits

an ecological niche that overlaps marginally with the other two lineages (Fitze et al.,

2011). Phylogenetic analyses indicate that P. occidentalis diverged from the ancestor of

P. edwardsianus and P. hispanicus, and the observed niche conservatism, as well as the

current geographic distribution, suggest that speciation happened in allopatry. In contrast,

P. edwardsianus and P. hispanicus speciated during the Messinian salinity crisis during

which major geologic and climatic changes occurred. The date of the split together with the

marginal niche overlap suggests that niche divergence was responsible for the speciation

of these last two species. Thus two distinct and temporally separated processes may have

probably led to the observed speciation events.

Some phylogenetic and phylogeographic studies have been previously done in different

Psammodromus species (Carranza et al., 2006; Fitze et al., 2011; Verdú-Ricoy et al.,

2010). Nevertheless, little is known about any of the Psammodromus species’ population

structure. Moreover, a recent article suggests that sexually selected traits could prevent

reproduction and gene flow at secondary contact zones among them, which may reinforce

their isolation (San-Jose, Gonzalez-Jimena & Fitze, 2012) and would be congruent

with patterns observed in species with similar characteristics (e.g., Psammodromus

algirus, Sceloporus occidentalis, Aspidoscelis hyperythra; Telleria et al., 2011; Brehme et

al., 2013). In order to unravel the population structure, conservation status and their

congruence among species, the population genetics of three recently described species

(P. edwardsianus, P. hispanicus, and P. occidentalis) was studied, using mitochondrial DNA

and a sampling covering the biggest area of their natural geographic distribution. Results

will be very useful, for conservation and management issues, among other reasons.

MATERIALS AND METHODS
DNA samples
Following the recent nomenclature described by Fitze et al. (2012), a total of 247

individuals from Psammodromus hispanicus (n = 69), P. edwardsianus (n = 135) and

P. occidentalis (n = 43) were used in this study. The study employs all of the currently

available genetic data and it includes three of the six described species of the Genus (note:

for the other species of this genus no intensive population sampling has been conducted
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Figure 1 Sampling distribution of Psammodromus edwardsianus, P. hispanicus and P. occidentalis in the
Iberian Peninsula.

to date). Cytochrome B (cytB) sequences of the studied species (the only marker with

enough sample sizes for this study) were obtained from GenBank (for accession numbers

and original procedures, see Fitze et al., 2011). All used sequences stem from specimens

collected in the same year, under standardized conditions and over the largest part of their

natural geographic distribution (Fig. 1), which guarantees high comparability. Sequences

were visualized, edited, and aligned employing BioEdit (Hall, 1999) and the ClustalW

algorithm (Thompson, Higgins & Gibson, 1994).

Population genetic analyses
All populations with a sample size of at least nine individuals were included in the

sequence datasets (Table 1). The only exception was the population HuEx (n = 8), where

two populations from neighbouring provinces have been joined (Hu, n = 5 and Ex,

n = 3) because unfortunately not any of the sampled southern P. occidentalis populations

consisted of more than 8 captured individuals.

Genetic variability, measured as haplotype (h) and nucleotide (π) diversity, as well as

genetic differentiation among populations, measured as FST (and their corresponding

P-values), were calculated with Arlequin v3.11 software (Excoffier & Lischer, 2010).

The same software was employed for the Analysis of Molecular Variance (AMOVA;

1,000 permutations) with the total Psammodromus dataset and for searching signals of

population expansions in the analysed populations testing deviation from equilibrium

expectations with Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) neutrality tests based on

an infinite-site model without recombination.
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Table 1 Genetic variability within populations and species. Shown are sample size (n), haplotype
diversity (h) and nucleotide diversity (π), the latter two are measured in %. Tajima’s D and Fu’s Fs test
for population expansion. (A) Psammodromus edwardsianus (B) P. hispanicus, and (C) P. occidentalis.

n h π D Fs

(A)

Val 22 70.60 0.482 1.182 1.199

BGrn 15 62.90 0.566 −0.281 0.440

Al 14 38.46 0.221 −1.278 −0.314

PrBa 24 29.98 0.116 0.138 0.268

Gir 27 0.00 0.000 0.000 0.000

Zr 18 11.11 0.089 −0.507* 0.070

Cu 15 73.33 0.382 0.096 −0.443

(B)

Mu 9 55.60 0.848 −0.804 1.919

Lg 23 16.60 0.067 −0.662 −0.213

ES 28 26.45 0.110 −0.972 −1.090

Pt 9 41.67 0.714 −1.797* 1.520

(C)

CaMa 13 28.20 0.113 −0.274 0.240

Ln 9 0.00 0.000 0.000 0.000

Gal 13 0.00 0.000 0.000 0.000

HuEx 8 85.70 0.047 1.131 2.797

Notes.
* P < 0.05.

Isolation by distance (IBD) was studied with GENEPOP (Rousset, 2008) employing

10,000 permutations and a Mantel test to investigate whether FST values transformed as

FST/(1 − FST) are linearly linked with the logarithm of the distance (in ln[km]) among the

sampled populations, as predicted by a two-dimensional migration model (Rousset, 1997).

In P. occidentalis IBD was studied without the HuEx population because HuEx consists of

two populations.

RESULTS
Genetic diversity varied among populations in all the three species (Table 1). The

haplotype diversity ranged from 0 to 71% in Psammodromus edwardsianus, from 0 to

86% in P. occidentalis and from 17 to 56% in P. hispanicus. P. hispanicus was the only

species without monomorphic populations. Nucleotide diversity ranged from 0.000 to

0.566 in P. edwardsianus, from 0.067 to 0.848 in P. hispanicus and from 0.000 to 0.113 in P.

occidentalis. Neither tests (Tajima’s D and Fu’s Fs; Table 1) provided evidence of population

expansion for most populations, except for Zr in P. edwardsianus and Pt in P. hispanicus

using Tajima’s D.

AMOVA (Table 2) showed highly significant genetic differentiation among species as

well as among populations within species (P < 0.001 in both cases). FST values (Table 3)

showed significant genetic differentiation (P < 0.05) among almost all populations of

P. edwardsianus except between the two northernmost populations (population pairs
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Table 2 AMOVA results considering each of the three studied species (Psammdoromus edwardsianus,
P. hispanicus and P. occidentalis) and their populations.

Source of variation Variance components Percentage of variation P-value

Among species 10.75834 88.7 0.000

Among populations within species 0.86622 7.14 0.000

Within populations 0.50373 4.15 0.000

Table 3 Genetic differentiation (measured with FST values), among the different sampled populations
of (A) P. edwardsianus, (B) P. hispanicus and (C) P. occidentalis.

(A) Val BGrn Al PrBa Gir Zr Cu

Val –

BGrn 0.76* –

Al 0.78* 0.82* –

PrBa 0.39* 0.83* 0.89* –

Gir 0.46* 0.89* 0.94* 0.14* –

Zr 0.37* 0.82* 0.89* 0.07 0.02 –

Cu 0.34* 0.76* 0.80* 0.22* 0.29* 0.19* –

(B) Mu Lg ES Pt

Mu –

Lg 0.57* –

ES 0.56* 0.04 –

Pt 0.22* 0.09 0.09 –

(C) CaMa Ln Gal HuEx

CaMa –

Ln 0.04 –

Gal 0.08 0.00 –

HuEx 0.63* 0.57* 0.64* –

Notes.
* P < 0.05

PrBa-Zr and Zr-Gir). In P. occidentalis three of the six population differences were

significant (Table 3C) and among the northern populations no significant differentiation

existed. In P. hispanicus, MU significantly differed from the other populations, showing

that no significant differentiation existed among northern populations.

Isolation by distance (IBD) tests resulted highly significant (P < 0.01) in P. edward-

sianus. In P. hispanicus and P. occidentalis, no significant IBD was found.

DISCUSSION
This is the first article describing the population structure of a Psammodromus species.

Phylogenetic studies have been previously conducted for the three studied species (Psam-

modromus edwardsianus, P. hispanicus, and P. occidentalis; Fitze et al., 2011) and in one of

the other species of the same Genus (P. algirus) phylogeographic studies exist (Carranza et
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al., 2006; Verdú-Ricoy et al., 2010). Despite the inherent limitations of mitochondrial DNA

and the limited number of samples available, our results showed different population

structures depending on species, but all three species exhibited significant genetic

differences among them as well as a similar latitudinal (i.e., north–south) genetic structure.

In P. edwardsianus, northern populations (Gir, PrBa, and Zr) had lower genetic variabil-

ity than southern populations (Table 1A), the former containing one monomorphic pop-

ulation (Gir). These northern populations, located in the Ebro Valley, also form a genetic

separate unit consisting of populations without significant genetic differentiation between

them (except between PrBa and Gi). Isolation by distance (IBD) was present in this species.

For P. hispanicus, IBD was not significant, no-genetic differentiation existed among

populations, and genetic variability was high, suggesting that their populations are

connected. The only differentiated population was the MU population. Genetic variability

in this species increased with latitude, which is in line with the higher haplotype variability

of the southern populations compared to the northern ones (Table 1B).

P. occidentalis did not show significant IBD and genetic differences were found among

most population pairs, except among the HuEx and the other populations. The two

northern populations were monomorphic, while the southern populations had high

genetic variability (Table 1C).

As observed in a diverse range of species, the here studied lizards have genetically

isolated populations, which requires special management actions because, among others,

they are more sensitive to environmental changes (Vucetich & Waite, 2003). The isolation

of the populations cannot be explained by any of the big geographic barriers of the Iberian

Peninsula (except the Ebro Valley in P. edwardsianus), nor by anthropogenic infrastruc-

tures such as roads. Big highways or heavy traffic roads determine the movement of other

lizard species and small and big mammals (Telleria et al., 2011; Brehme et al., 2013; Franz

et al., 2010; Frantz et al., 2012). The populations of the here studied species are separated

by several major high-ways (at least 4 lanes). Nevertheless there existed relatively low

genetic differentiation in P. hispanicus and P. occidentalis (only 1 population differed from

the other populations). Our results suggest that roads do not determine their population

structure, at least at global scale, suggesting that road networks affecting species gene flow

might be species-specific (Garcia-Gonzalez et al., 2012). Additionally, these isolated pop-

ulations did not seem to follow a general geographic central-marginal pattern of genetic

diversity, where higher genetic diversity would exist in the core populations compared to

the populations at the borders of the species’ geographic distribution (Eckert, Samis &

Lougheed, 2008). However, fine scale sampling is required to underpin this hypothesis.

Nevertheless, all the three studied Psammodromus species followed a latitudinal gradient of

genetic diversity, with reduced diversity in northern populations, which is in line with the

general patterns described for vertebrates (Adams & Hadly, 2013). The detected low genetic

population differentiation in P. hispanicus P. occidentalis might exist due to the relatively

low number of sampled individuals (Frantz et al., 2012) or due to the use of mitochondrial

DNA only, which could result in incomplete genetic information, and it would therefore

be advantageous to corroborate the observed patterns using nuclear DNA and bigger
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sample sizes. Nevertheless, the sample size and the mitochondrial data allowed detecting

a latitudinal gradient of genetic diversity in all three species, showing that broad and/or

ancient, but may be not fine or recent sources of genetic diversity can be detected.

As commented above, IBD was only significant in P. edwardsianus, but not in the other

two species. The lack of IBD might be explained by the species distribution and the

geographic sampling. First, the geographic distribution of P. hispanicus covers mainly

the northern part of the southern Peninsula, and only one population was sampled

on the southern Peninsula. Second, in none of the sampled southern populations of

P. occidentalis could we obtain enough individuals to test for population differentiation,

despite several months of fieldwork in this area. To test whether the lack of southern

populations may have affected the results, the IBD analysis was repeated in P. edwardsianus

using a subset containing no southern populations (BGrn, and Al). The subset rendered

drastic differences since IBD was not longer significant (P = 0.192). This suggests that in

P. hispanicus and P. occidentalis IBD results might be affected by the sampling. Thus, the

here observed absence of IBD in the two species requires careful interpretation and its

presence cannot be discarded.

In sum, mitochondrial DNA showed that all three studied Psammodromus species

are distributed along the Iberian Peninsula in fragmented units with higher genetic

variability in southern populations (latitudinal variation). In conservation terms, isolated

populations (the Ebro valley genetic unit in P. edwardsianus, the MU population in

P. hispanicus and HuEx in P. occidentalis) as well as those with low genetic variability

(the northern populations of all the three species) require specific measures and have to

be specially managed together with the more variable populations, because a balanced and

dynamic conservation strategy is needed (Mcdonald-Madden, BPW & Possingham, 2008).

In addition to this, the genetic differences among populations described here suggest that

road infrastructures do not affect the species’ population structure at global scale, what

contrasts to other lizard species of similar characteristics (Telleria et al., 2011; Brehme et al.,

2013). This finding is in line with a study in amphibians (Garcia-Gonzalez et al., 2012) and

highlights the importance of species-specific studies regarding this issue.
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