Самарская Лука: проблемы региональной и глобальной экологии. Самарская Лука. 2009. – Т. 18, № 1. – С. 134-137.

УДК [598.112.23:576.316.353.7](470.43/44)

ОСОБЕННОСТИ КАРИОТИПА РАЗНОЦВЕТНОЙ ЯЩУРКИ *EREMIAS ARGUTA* (PALLAS, 1773) (LACERTIDAE) НА СЕВЕРЕ АРЕАЛА В ПОВОЛЖЬЕ

©2009 В.Г. Табачишин¹, Э.И. Кайбелева², Е.В. Завьялов²*

¹Саратовский филиал Института проблем экологии и эволюции им. А.Н. Северцова РАН, г. Саратов (Россия) hrustovav@forpost.ru;

²Саратовский государственный университет им Н.Г. Чернышевского, г. Саратов (Россия) zavialov@info.sgu.ru
Поступила 28 октября 2007 г.

Представлены результаты хромосомных исследований $Eremias\ arguta\ us$ Самарской и Саратовской областей. Установлено, что диплоидный набор E. $arguta\$ исследуемых поволжских популяций включает 38 хромосом: 2n=38, NF=38. Структура кариотипа самки 2n=35M+3m, самца -2n=36M+2m. Показано, что кариотип разноцветной ящурки из Саратовской и Самарской областей сходен с описанными ранее наборами хромосом изучаемого подвида E. a. deserti. В то же время саратовские E. a. deserti отличаются от разноцветных ящурок из Самарской области по числу пар ЯОР-несущих хромосом, которые у саратовских E. arguta обнаружены на 2, 4 и 7-й парах хромосом, а у самарских - на 1, 2, 4 и 9-й парах.

Ключевые слова: Eremias arguta, кариотип, Саратовская область, Самарская область.

Разноцветная ящурка *Eremias arguta* (Pallas, 1773) является одним из наиболее изученных в России и сопредельных странах представителей рода *Eremias*. Этому во многом способствовало ее включение в число животных, вошедших в монографическое описание «Разноцветная ящурка» (1993). Однако некоторые аспекты морфологии разноцветной ящурки из-за мозаичности поселений на севере ареала остаются до конца не изученными. Данное замечание справедливо в отношении локальных популяций разноцветной ящурки из Самарской и Саратовской областей (Завьялов и др., 2003; Епланова, 2005; Табачишин и др., 2006*a*; Шляхтин и др., 2006), которые до настоящего времени кариологически недостаточно изучены, что в целом определило актуальность данной работы.

^{*}Василий Григорьевич Табачишин, старший научный сотрудник; Эльмира Исмаиловна Кайбелева, аспирант; Евгений Владимирович Завьялов, профессор.

Хромосомные препараты готовили по стандартной методике (Манило, 1989) с небольшими изменениями (Табачишин и др., 2006б) из клеток периферической крови ящериц. Готовые препараты окрашивали азур-эозином по Романовскому, затем их анализировали посредством микроскопирования («Jenoval», К. Zeiss). Проводили анализ не менее 10 метафаз для каждого животного. Хромосомные препараты исследованных *Е. arguta* хранятся в зоологическом музее Саратовского госуниверситета.

Проведенное исследование показало, что диплоидный набор разноцветной ящурки исследуемых поволжский популяций включает 38 хромосом: 2n = 38, NF = 38 (рис. 1, 2). Структура кариотипа самки 2n =35M + 3m, camua -2n = 36M + 2m. Пара гетерохромосом у самок, состоящая из макро- и микрохромосом, является половой (W-хромосома микрохромосома). У самцов *Z*хромосомы - это последняя пара макрохромосом. Все хромосомы акроцентрические, постепенно убывающие по величине. Ядрышковые организаторы (ЯОР) помещены на теломерных участках 4 (саратовское Правобережье) и 2, 4 и 7-й (саратовское Левобережье) пар аутосом у саратовских *E. arguta*, а у самарских – на 1, 2, 4 и 9-й пар.

Таким образом, кариотип разноцветной ящурки из Саратовской и Самарской областей сходен с описанными ранее наборами хромосом изучаемого подвида из Предкавказья (Иванов, Федорова, 1973). Он также сходен с кариотипом разноцветной ящурки из Монголии, представленной подвидом *Е. а. potanini* (Орлова, Тэрбиш, 1997). В то же время по-

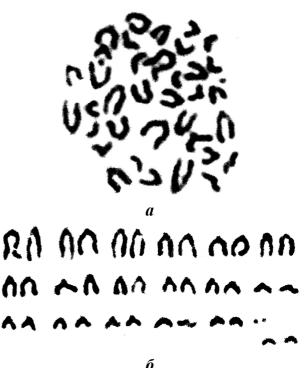


Рис. 1. Метафазная пластинка (a) и кариограмма (б) хромосомного набора самца Eremias arguta из окрестностей г. Тольятти

Рис. 2. Метафазная пластинка (a) и кариограмма (б) хромосомного набора самки Eremias arguta из окрестностей с. Нижняя Банновка Красноармейского района Саратовской области

волжские *E. a. deserti* отличаются от разноцветных ящурок из Монголии по числу пар ЯОР-несущих хромосом, которые у монгольских *E. arguta* обнаружены на 15-й паре хромосом (Panfilov, Eremchenko, 1995), а у изученных нами ящурок — на 4 (саратовское Правобережье), 2, 4 и 7-й (саратовское Заволжье) и 1, 2, 4 и 9-й (самарское Заволжье) парах.

Таблица Выборки разноцветной ящурки, использованные в исследовании

№	Пол	Кол-во экз.	Место и дата сбора
1	3	6	Саратовская обл., Красноармейский р-н, окрестности с. Нижняя
	9	5	Банновка, 2006 г.
2	8	2	Саратовская обл., окрестности г. Энгельса, 2006 г.
	9	2	
3	8		Саратовская обл., Марксовский р-н, окрестности пос. Восток,
			2007 г.
4	8	1	Самарская обл., окрестности г. Тольятти, 2006 г.

Исходя из приведенных сведений можно предположить значительные преобразования ЯОР-несущих хромосом у разноцветных ящурок из различных частей ареала. Причиной выявленных изменений предположительно могут являться хромосомные перестройки, приводящие к утрате большинства ЯОР. Кроме того, возможно, что они обусловлены утратой функциональной активности некоторых или большинства ЯОР в процессе диплоидизации генома ящурок. С этих позиций множественные ЯОР могут рассматриваться как предковый признак кариотипа рептилий. В этой связи представляется перспективным дальнейший сравнительный анализ хромосомных наборов разноцветной ящурки из различных частей ареала.

СПИСОК ЛИТЕРАТУРЫ

Епланова Г.В. Таксономический состав, экология и охрана настоящих ящериц (Lacertidae) Среднего Поволжья: Автореф. дис. ... канд. биол. наук. Тольятти, 2005. 19 с.

Завьялов Е.В., Табачишин В.Г., Шляхтин Г.В. Современное распространение рептилий (Reptilia: Testudines, Squamata, Serpentes) на севере Нижнего Поволжья // Современная герпетология. 2003. Т. 2. С. 52–67.

Иванов В.Г., Федорова Т.А. Гетерохромосомы в кариотипе разноцветной ящур-ки // Цитология. 1973. Т. 15, № 6. С. 762–765.

Манило В.В. Кариологическое исследование рептилий // Руководство по изучению земноводных и пресмыкающихся / Ин-т зоологии им. И.И. Шмальгаузена АН УССР. Киев, 1989. С. 100–109.

Орлова В.Ф., Тэрбиш Х. Семейство Настоящие ящерицы – Lacertidae Cope, 1864 // Земноводные и пресмыкающиеся Монголии. Пресмыкающиеся. М.: Тов-во науч. изд. КМК, 1997. С. 133–266.

Разноцветная ящурка / Под ред. Н.Н. Щербака. Киев: Наукова думка, 1993. 240 с. Табачишин В.Г., Завьялов Е.В., Табачишина И.Е. Пространственное размещение разноцветной ящурки — *Eremias arguta* (Pallas, 1773) на севере ареала в Поволжье // Современная герпетология. 2006а. Т. 5/6. С. 117–124. — Табачишин В.Г., Кайбелева Э.И., Иванова Ю.В. Особенности кариотипа разноцветной ящурки — *Eremias arguta* из саратовского Правобережья // Актуальные проблемы герпетологии и токсинологии: Сб. науч. тр. Вып. 9. Тольятти, 2006б. С. 167–170.

Шляхтин Г.В., Табачишин В.Г., Завьялов Е.В., Табачишина И.Е. Животный мир Саратовской области. Кн. 4. Амфибии и рептилии. Саратов: Изд-во Сарат. ун-та, 2005. 116 с.

Panfilov A.M., Eremchenko V.K. New information about localization active nors on the chromosomes of some Lacertid and Scincid lizards // Abstr. Sec. Asian Herpetol. Meet. Moscow: Folium, 1995. P. 45.

KARYOTYPE FEATURES OF STEPPE RUNNER *EREMIAS ARGUTA* (PALLAS, 1773) (LACERTIDAE) IN ITS NORTHERN HABITAT IN VOLGA REGION

© 2009 V.G. Tabachishin¹, E.I. Kaybeleva², E.V. Zavialov²

The results of our chromosome studies on *Eremias arguta* from the Samara and Saratov regions are presented. The diploid set of *E. arguta* from the Volga populations surveyed has been found to include 38 chromosomes: 2n = 38, NF = 38. The female and male karyotype structures are 2n = 35M + 3m and 2n = 36M + 2m, respectively. The karyotype of *E. arguta* from the Saratov and Samara regions is shown to be similar to the earlier described chromosome sets of the subspecies *E. a. deserti*. At the same time, the Saratov *E. a. deserti* differ from *E. arguta* from the Samara region by the number of pairs of NO-carrying chromosomes, which in the Saratov *E. arguta* are found on the 2nd, 4th, and 7th chromosome pairs, and in the Samara ones – on the 1st, 2nd, 4th, and 9th pairs.

Key words: Eremias arguta, karyotype, Saratov region, Samara region.