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Eocene lizard from Germany reveals amphisbaenian
origins
Johannes Müller1, Christy A. Hipsley1,2, Jason J. Head3, Nikolay Kardjilov4, André Hilger4, Michael Wuttke5 & Robert R. Reisz3

Amphisbaenia is a speciose clade of fossorial lizards characterized
by a snake-like body and a strongly reinforced skull adapted for
head-first burrowing1,2. The evolutionary origins of amphisbae-
nians are controversial, with molecular data uniting them with
lacertids3,4, a clade of Old World terrestrial lizards, whereas mor-
phology supports a grouping with snakes and other limbless squa-
mates5–9. Reports of fossil stem amphisbaenians10 have been
falsified11, and no fossils have previously tested these competing
phylogenetic hypotheses or shed light on ancestral amphisbaenian
ecology. Here we report the discovery of a new lacertid-like lizard
from the Eocene Messel locality of Germany that provides the first
morphological evidence for lacertid–amphisbaenian monophyly
on the basis of a reinforced, akinetic skull roof and braincase, sup-
porting the view that body elongation and limblessness in amphis-
baenians and snakes evolved independently. Morphometric analysis
of body shape and ecology in squamates indicates that the postcra-
nial anatomy of the new taxon is most consistent with opportunis-
tically burrowing habits, which in combination with cranial
reinforcement indicates that head-first burrowing evolved before
body elongation and may have been a crucial first step in the evolu-
tion of amphisbaenian fossoriality.

Reptilia Laurenti, 1768
Squamata Oppel, 1811

Lacertibaenia Vidal and Hedges, 2005
Cryptolacerta hassiaca gen. et sp. nov.

Etymology. Crypto-, from the ancient Greek kruptz, meaning ‘hid-
den’ or ‘secret’, referring to the inferred ecology of the animal; lacerta
(Latin), meaning lizard; hassiaca (Latin), female adjective for Hesse,
the German province of the Messel locality.
Holotype. SMF ME 2604 (Fig. 1), Forschungsinstitut und
Naturmuseum Senckenberg, Frankfurt, Germany.
Locality and horizon. West of Quarry 2, 50 cm above Levelb12. Messel
Pit World Heritage Site, Hesse, Germany; Eocene (Lutetian).
Diagnosis. Lacertibaenian squamate with a snout–vent length of
approximately 7 cm; skull capsule-like, anteriorly downturned and
heavily ossified; transverse nasofrontal suture; small narial openings
facing strictly anteriorly owing to a unique dorsolateral covering by
the maxilla; small posterodorsal coronoid process of the dentary; 14
dentary, 7 premaxillary and 12 maxillary teeth with the posterior-most
maxillary tooth enlarged; 27 presacral vertebrae; manus and pes
strongly reduced in size relative to the remaining limb. Shares with
amphisbaenians a relatively elongated postorbital skull portion, blunt
and rounded snout, sutural contact between prefrontal and postorbito-
frontal, contact between prefrontal and jugal, absence of a lacrimal,
small jugal with only little angulation, subequal width of the anterior
and posterior borders of the frontal, absence of frontal constriction
between the orbits, loss of the tympanic crest, neural spines reduced,
seven or fewer cervical vertebrae, rod-like clavicles, absence of an

anterior coracoid emargination and interclavicle, fusion of cephalic
scales, transversely widened frontal subolfactory processes, thickening
of maxilla and frontal, small orbits, a vertical tongue-and-groove articu-
lation between the frontals, and absence of an iliac anterodorsal
projection.

The type and only known specimen of Cryptolacerta hassiaca is
nearly complete, missing only the distal tail (Fig. 1a). Computed tomo-
graphy (CT) imaging and specimen examination (Figs 1b, c and 2)
reveal a mosaic of lacertid and amphisbaenian anatomical characters.
The skull is massive and heavily ossified, with an anteroventrally
downturned anterior portion (Fig. 1d). Extensive dermal sculpturing
covers the skull roof and well preserved scute sulci reflect the presence
of large, transversely oriented scales. Both maxilla and frontals display
a massive thickening in cross-section coupled with an increase in bone
density, obscuring the vascularized internal structure seen in the more
posterior cranial elements as well as in lacertids and most other lizards;
the same condition in Cryptolacerta occurs in amphisbaenians. The
external nares are small and anteriorly oriented and are bounded
dorsally by a unique anteromedial flange of the maxilla. Small orbits
indicate reduced eyes, and the prefrontal and postfrontal have a strong
sutural contact similar to fossil amphisbaenians13–15. Cryptolacerta has
a vertically tall tongue-and-groove interdigitation of the median con-
tact of the paired frontals as in amphisbaenians (Fig. 2a), and the
prominent frontal subolfactory processes, although lacking a median
contact as in lacertids, are notably widened transversely and form the
major part of the posterior wall of the nasal capsule, a feature shared
with amphisbaenians (see Supplementary Information). The parietal
table is prominent and shows the typical lacertid Y-shaped crest that
articulates with the braincase on its ventral surface (Fig. 2b). The large
size and ventral extension of the crest indicates close proximity or
ossification with the prootic and supraoccipital, resulting in reduced
cranial kinesis. The braincase is crushed, and only the parabasisphe-
noid and slender basipterygoid articulations are preserved. The middle
ear is reduced as evidenced by the absence of a quadrate tympanic crest
(Fig. 2c). The dentary has a posterolateral extension covering the ante-
rolateral part of the coronoid (Fig. 1c), as in many amphisbaenians,
despite retaining a typically lacertid shape.

Cryptolacerta possesses a distinctive heterodont dentition. The six
preserved teeth on the premaxilla are conical and diminutive. The 11
maxillary teeth continuously increase in size posteriorly, with the last
tooth being expanded and bulbous in shape and the remaining teeth
having bicuspid crowns. The 14 teeth on the dentary also are similar to
the maxillary teeth, but lack an enlarged posterior-most tooth.

Postcranially, Cryptolacerta possesses 29 procoelous precaudal
vertebrae with very low neural spines, including seven cervicals and
two sacrals. The pectoral girdle consists of recurved clavicles, slender
scapulacoracoids and the sternum, whereas the interclavicle is absent
(Fig. 2d). The pelvic girdle possesses a well-developed ilium that lacks
an anterodorsal process (Fig. 2e). Although not all autopodia are fully
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preserved, the phalangeal formula of 2–3–4–4/5?–3 suggests that no
digits are lost, but the phalangeal elements are miniaturized relative to
the remaining limb bones (Fig. 2f).

The systematic position of amphisbaenians within Squamata is
poorly constrained. Molecular data support a sister-taxon relationship
with lacertids3,4,16,17, but there is no morphological character support
among living taxa uniting the highly derived amphisbaenians with
lacertids. Most morphological analyses support a common ancestry
of amphisbaenians and snakes6–9, but character support for this
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Figure 1 | Cryptolacerta hassiaca gen. et sp. nov., holotype (SMF ME 2604).
a, Nearly complete specimen. b, Micro-CT scan of skull and outline of bones in
dorsal view. c, Micro-CT scan of skull and outline of bones in ventral view.
d, Reconstruction of skull in dorsal and lateral view. Scale bars, 5 mm (a), 2 mm
(b, c). Abbreviations: an, angular; ar, articular; c, coronoid; d, dentary; ec,
ectopterygoid; f, frontal; hy, hyoid; j, jugal; m, maxilla; n, nasal; p, parietal; pb,
palpebral; pbs, parabasisphenoid; pf, prefrontal; pob, postorbital; pof,
postfrontal; pm, premaxilla; pra, prearticular; pt, pterygoid; q, quadrate; sa,
surangular; so, supraoccipital; sq, squamosal; st, supratemporal.
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Figure 2 | Cryptolacerta hassiaca gen. et sp. nov., holotype (SMF ME 2604),
anatomical features as revealed by CT. a, Transverse section through the
anterior part of the frontals (f). b, Parietal in ventral view showing the Y-shaped
crest. c, Left quadrate in posterolateral view. d, Section showing shoulder girdle
with sternum (st), scapulocoracoid (sc) and clavicle (cl). e, Pelvic girdle with
outlines to emphasize the morphology of ischium (is), ilium (il) and pubis (pu).
f, Manus with digits I–V; note that digit IV lies on top of digit V, as revealed by
different CT sections. Scale bars, 1 mm.
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hypothesis has been considered homoplastic18. To determine the sig-
nificance of Cryptolacerta for resolving systematic relationships of
amphisbaenians, we performed a phylogenetic analysis on a combined
data set of morphological characters and nuclear gene sequences (rag-
1, c-mos) for extant and fossil squamates using parsimony and
Bayesian methods (Fig. 3a). Analyses of combined data recover a
monophyletic lacertid–amphisbaenian (‘lacertibaenian’4) clade, with
Cryptolacerta clustering as sister taxon to Amphisbaenia in both the
parsimony and Bayesian analyses (Fig. 3a). The sister relationship with
Amphisbaenia is supported by 19 characters distributed across the
entire skeleton (see Supplementary Information). Although homoplasy
is common in many squamate osteological characters9,18, the tongue-
and-groove articulation of the frontals is unique to Cryptolacerta and
Amphisbaenia, the transversely widened frontal downgrowths occur

otherwise only in some scolecophidian snakes, the thickened frontal
and maxilla can be found to a variable extent only in dibamids, snakes
and varanids, the absence of a tympanic crest and the very low neural
spines otherwise occur only within fossorial snakes, dibamids and some
anguimorphs, and a sutural prefrontal–postorbitofrontal contact is
shared only by some anguimorphs and Sineoamphisbaena. This last
taxon, a Mesozoic squamate previously considered a stem-amphisbae-
nian10, falls within Polyglyphanodontidae as in other recent analyses11

(Fig. 3a).
Cranial osteology of Cryptolacerta provides the first evidence of the

origin of the derived amphisbaenian skull (Fig. 3b). In both Cryptolacerta
and amphisbaenians the skull is reinforced by a strong vertical inter-
digitation of the frontals, thick, dense maxillae and frontals, and ventral
downgrowth of the parietal. In lacertids the anterolateral portions of
the ventroparietal crest closely approach the membranous alar pro-
cesses of the prootic, and in amphisbaenians a membranous extension
of the prootic is sutured to the ventrally extending parietal (Fig. 3b).
Although the crest in Cryptolacerta is similar to lacertids, it is much
more strongly developed and we infer extensive contact between the
parietal and prootic. Additionally in basal amphisbaenians, the dorsal
outline of the parietal table strongly reflects the shape of the ventro-
parietal crest of Cryptolacerta13–15, suggesting that the lateral parts of a
lacertid-like parietal became reduced during amphisbaenian evolution.

Body shape in squamates corresponds to locomotory habits19,20, and
the nearly complete skeleton of Cryptolacerta provides an opportunity
to infer ecology near the origin of Amphisbaenia. To determine the
habits of the taxon, we morphometrically analysed body shape in
Cryptolacerta and extant squamates occupying habitats represented
in the Messel depositional system (Fig. 4). Principal component
analysis of cranial, axial and appendicular measurements19 produced
morphospaces within which ecological habits were defined for extant
taxa, and inferred for Cryptolacerta. For all coordinated principal com-
ponent axes, Cryptolacerta falls outside the morphospace defined by fully
fossorial squamates (Fig. 4). Although the reinforced skull and super-
ficially small limbs are suggestive of fossorial habits, Cryptolacerta occu-
pies a position within morphospace defined by taxa that are cryptic, leaf
litter specialists and opportunistic burrowers (Fig. 4), based on relative
body size, limb lengths and head size.

Ecomorphometry of Cryptolacerta and adaptations for a reinforced
skull indicate that the early ecology of amphisbaenians and their rela-
tives consisted of cryptic behavioural habits combined with head-first
substrate locomotion, possibly as a defensive or predation strategy.
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Figure 3 | Phylogeny of Cryptolacerta and the evolution of cranial akinesis
in the origin of the amphisbaenian skull. a, Time-calibrated phylogeny of
Squamata based on Bayesian analysis of morphological and molecular
characters. Bold taxa with asterisks are from the Messel locality; the blue box
denotes Lacertibaenia. b, Evolution of the amphisbaenian skull. Dorsal skull
roofs and transverse sections through the dorsal braincase of (from left to right)
Podarcis pityusensis (Lacertidae), Cryptolacerta hassiaca gen. et sp. nov. and
Rhineura floridana (Amphisbaenia)30. The ventroparietal crest of lacertids is
ventrally connected with the prootic (blue) through a membranous sheet. In
Cryptolacerta the crest is more prominent and must have had an extensive
contact with the prootic. In amphisbaenians the crest is in full contact with the
prootic and forms a secondary temporal region.
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Figure 4 | Ecomorphology of Cryptolacerta. Principal component analysis of
squamate morphology with ecological habits projected into shape space.
Fossorial and cryptic morphospaces are shaded. Cryptolacerta occupies a
position within the cryptic and terrestrial habit spaces.
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Body elongation and limb reduction or loss are often considered pre-
requisites of fossoriality in squamates21–23; however, Cryptolacerta
demonstrates that modifications to cranial architecture preceded post-
cranial specializations in amphisbaenians, showing that hypotheses of
ecological character correlation may mask radically different histories
of character evolution in ecological specialization18,23.

Recent molecular divergence estimates24 and the fossil record25 indi-
cate that lacertids and amphisbaenians diverged in the Late Cretaceous,
at least 20 Myr before the occurrence of Cryptolacerta. The late occur-
rence of Cryptolacerta is consistent with hypotheses that intermediate
body forms in the evolution of body elongation and limblessness can
persist for tens of millions of years20. It also suggests that the
Palaeogene of Europe was a refugium for archaic Mesozoic squamate
lineages, as indicated by co-occurring Eolacerta, ‘Saniwa’, and
Ornatocephalus9,26–28 (Fig. 3a), probably resulting from the island geo-
graphy of Europe during the Late Cretaceous and early Cenozoic29.

METHODS SUMMARY
The specimen was scanned by CT at the Helmholtz Centre Berlin for Materials and
Energy using a micro-focus X-ray tube. Cranial reconstructions were performed
using a wax model based on the CT data. Phylogenetic analyses were run using a
partitioned data set of 364 morphological and 3,216 molecular (rag-1, c-mos) char-
acters as well as 65 terminal taxa, using both parsimony and Bayesian methodology.
Morphometric analysis used principal component analysis of a published data set of
linear measurements of squamate body forms for taxa inhabiting environments
represented in the Grube Messel depositional system19 to which Cryptolacerta was
added based on measurements obtained from a digital calliper.
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