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Modelling Bedriaga’s rock lizard distribution in Sardinia:
An ensemble approach

Pierluigi Bombi*, Daniele Salvi, Leonardo Vignoli, Marco A. Bologna

Abstract. Many techniques for predicting species potential distribution were recently developed. Despite the international
interest for these procedures, applications of predictive approaches to the study of Italian fauna distribution are exceptionally
rare. This paper aimed at: (a) detecting climatic exigencies of A. bedriagae in Sardinia; (b) predicting the Archaeolacerta
bedriagae Sardinian potential distribution; (c) identifying the most vulnerable Italian populations of the species. Literature
and field data were utilized as presence records. Six modelling procedures (BIOCLIM, DOMAIN, ENFA, GAM, GLM, and
MAXENT) were adopted. The species climatic requirements were defined using the WorldClim databank for deriving the
environmental predictors. AUC and Kappa values were calculated for models validation. AUC values were compared by using
Anova Monte Carlo. The best four models were combined through the weighted average consensus method for producing a
univocal output. GAM and MAXENT had the best performances (respectively: AUC = 0.93 ± 0.03, Kappa = 0.77 ± 0.08;
AUC = 0.93 ± 0.03, Kappa = 0.78 ± 0.07). Good results were also obtained by GLM and DOMAIN (respectively:
AUC = 0.89 ± 0.04, Kappa = 0.72 ± 0.05; AUC = 0.88 ± 0.04, Kappa = 0.69 ± 0.07). BIOCLIM and ENFA gained
relatively low performances (respectively: AUC = 0.78 ± 0.07, Kappa = 0.57 ± 0.14; AUC = 0.75 ± 0.06; Kappa =
0.49 ± 0.10). In Sardinia A. bedriagae is mainly influenced by seasonality, which causes the evidenced range fragmentation.
Moreover, the general importance of multi-methods approaches and consensus techniques in predicting species distribution
was highlighted.

Keywords: BIOCLIM, DOMAIN, ENFA, GAM, GLM, Lacertidae, MAXENT, Sardinia.

Introduction

During the last decades, the development of
geostatistical analyses, supported by improved
Geographic Information System (GIS) technol-
ogy, provided new instruments to conserva-
tion biology. In particular, the possibility of
applying predictive modelling techniques for
studying species distribution revealed its great
usefulness, being ever more commonly used
(e.g. Guisan and Zimmermann, 2000; Graham
et al., 2004; Sanchez-Cordero, Munguia and
Townsend-Peterson, 2004; Elith et al., 2006).
For this reason, many different approaches
were developed for elaborating habitat suitabil-
ity models on the basis of species-environment
interactions (e.g. Ferrier, 1984; Verner, Mor-
rison and Ralph, 1986; Margules and Austin,
1991; Franklin, 1995; Austin, 1998; Segurado
and Araújo, 2004). Some authors utilized an a-
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priori definition, based on expert knowledge,
for defining the species ecological require-
ments (e.g. Donovan, Rabe and Olson, 1987;
Breininger, Provancha and Smith, 1991; Con-
galton, Stenback and Barrett, 1993; Boitani et
al., 2002). On the contrary, many other tech-
niques applies specific algorithms for deriving
species environmental needs from point data
(e.g. Nix, 1986; Carpenter, Gillison and Winter,
1993; Manel, Dias and Ormerod, 1999; Guisan
and Zimmermann, 2000; Hirzel et al., 2002;
Brotons et al., 2004; Segurado and Araújo,
2004; Elith et al., 2006). A group of algo-
rithms compares presence data with reliable ab-
sence data for defining the species ecological
niche. This approach is utilized by several al-
gorithms, such as classification and regression
tree analyses (Breiman et al., 1984), generalized
linear models (GLM; Pearce and Ferrier, 2000),
generalized additive models (GAM; Pearce and
Ferrier, 2000), and artificial neural networks
(Thuiller, 2003). A second group of algorithms
defines the species ecological requirements on
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the basis of presence data only. BIOCLIM (Nix,
1986), DOMAIN (Carpenter, Gillison and Win-
ter, 1993), Mahalanobis distance (Farber and
Kadmon, 2003), and GARP (Stockwell and Pe-
ters, 1999) can be used as examples of this
category. Another approach, adopted by ENFA
(Hirzel et al., 2002) and MAXENT (Phillips,
Dudik and Schapire, 2004) among others, con-
sists of comparing presence data with back-
ground conditions. Generally, the first group
of algorithms has very good predictive perfor-
mances (Brotons et al., 2004) but, on the other
hand, the required absence data are rarely avail-
able in faunistic datasets. This problem can be
partially overcome by utilizing pseudo-absence
data, generated through alternative procedures
(e.g. randomly, or derived from preliminary
habitat suitability maps), for representing real-
absence data (Engler, Guisan and Rechsteiner,
2004; Chefaoui and Lobo, 2008).

The large number of techniques developed
over a relatively short period of time is proof
of the great interest in predictive approaches to
the study of species distribution. The conserva-
tionist interest for these procedures was still in-
creased by the introduction of consensus meth-
ods (e.g. Araújo and New, 2007; Marmion et
al., 2008). They allow at considering the hetero-
geneous results obtained by multiple models as
an ensemble, combining models through alter-
native methods (e.g. Weighted Average, Mean,
Median). The consensus methods have the great
advantage of allowing to overcome the uncer-
tainty deriving from multiple results, providing
a univocal and objective instrument for biodi-
versity conservation (Araújo and New, 2007).

Despite the amount of attention paid to ani-
mal distribution modelling worldwide, these
techniques are almost neglected in Italy. One of
the few examples of potential distribution pre-
diction for the Italian fauna is the Italian Eco-
logical Network (REN; Boitani et al., 2002),
which took into account all vertebrate species.
Unfortunately, the application of the REN ap-
proach to amphibians and reptiles showed some
difficulties (Boitani et al., 2002). Such difficul-

ties are related to the extremely fine-grain envi-
ronment perception of these animals, which can
be difficultly considered by the REN procedure.

The usefulness of these geo-statistic proce-
dures in decision-making process aimed at bio-
diversity protection is that they allow at focaliz-
ing the conservation initiatives toward the most
critical areas and populations. It can improve
our efficiency in planning effective measures
for contrasting the current biodiversity loss. The
allocation of the chronically limited resources
available for the protection of nature can be op-
timized if based on scientifically sound strate-
gies. At the light of these considerations we
applied habitat suitability modelling techniques
to the Bedriaga’s rock lizard (Archaeolacerta
bedriagae [Camerano, 1885]), a lacertid species
endemic to Corsica and Sardinia, in order to
fill the gap of knowledge about its distribution
and to provide new instruments for its conserva-
tion. This species is a rock dwelling lizard wide-
spread from the sea level up to the highest peaks
of both islands (Schneider, 1984; Castilla et
al., 1989; Bauwens et al., 1990; Vanhooydonck,
Van Damme and Aerts, 2000; Bombi and Vig-
noli, 2004; Bombi et al., 2009). The conserva-
tion status of A. bedriagae is poorly known, as
well as its biology. This species is listed in An-
nex II of the Bern Convention (Council of Eu-
rope, Bern 19.9.1979) and in the Annex IV of
the Habitat Directive (92/43/EEC), and is con-
sidered Vulnerable in the Red Data Book of
the Italian Vertebrates (Capula, 1998). Actually,
the fragmentation of the Italian range (fig. 1a)
of this strictly rupicolous lizard is locally em-
phasized by the rocky habitat discontinuity that
greatly increases the conservation relevance of
the species. Aims of this paper are: (i) com-
paring different techniques of habitat suitability
modelling, (ii) detecting the climatic variables
affecting the species distribution, and (iii) pro-
ducing a univocal consensus model, in order to
provide a helpful instrument for A. bedriagae
conservation in Italy.
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Figure 1. (a) Distribution of Archaeolacerta bedriagae (black points) in Sardinia (the darkness of the pixels is proportional to
the elevation [pale grey = sea level; black = 1900 m a.s.l.]). Models of habitat suitability produced by BIOCLIM (b), ENFA
distance geometric mean (c), ENFA distance harmonic mean (d), ENFA minimum distance (e), ENFA median (f), DOMAIN
(g), GLM (h), MAXENT (i), GAM (j); the darkness of the pixels is proportional to the habitat suitability value (pale grey:
not suitable; black: highly suitable). (k) Consensus model obtained through the weighted average method; the darkness of
the pixels is proportional to the habitat suitability value (pale grey: not suitable; black: highly suitable). (l) Isothermality in
Sardinia (pale gray = 26.7, black = 40.0).

Materials and methods

Species distribution data

Data collection. The complete list of A. bedriagae local-
ities in Sardinia was compiled by consulting all the avail-
able literature on the one hand (e.g., Peracca, 1905; Mertens,
1932; Stemmler, 1962; Cesaraccio and Lanza, 1984; Lanza,
Cesaraccio and Malenotti, 1984; Bruno, 1986; Borri et al.,
1988; Puddu, Viarengo and Erminio, 1988; In den Bosch,
1992; Poggesi et al., 1996; Michelot, 1997; Bombi and Vig-
noli, 2004) and by conducting intensive field research on the
other. The fieldwork was carried out between June 2000 and
April 2005 throughout Sardinia, including satellite islands,
with the aim of confirming the species presence in cited lo-
cations, defining the exact coordinates of those localities,
and identifying new sites. The presence of A. bedriagae
was checked in all of the cited localities as well as in other
rocky areas that appeared to be a-priori suitable for the par-
ticular autoecological requirements of the species (Bombi
et al., 2009). Exact coordinates of presence sites were ob-
tained by a GPS (Garmin, GPSmap 76S). The peculiar activ-
ity pattern and the generally low population density of this
species (Bombi and Vignoli, 2004) did not allow at defin-
ing reliable absence data. Therefore, the apparently suit-
able sites visited but not confirmed, nor cited in literature,
were excluded from the dataset, as well as the bibliographic
localities apparently not suitable and derived from unre-
liable sources. Detailed coordinates of bibliographic sites

were assigned by individuating rocky outcrops in the area
by means of detailed maps (IGM 1:25000), satellite images
(http://earth.google.com), and field surveys. This process al-
lowed us at obtaining 65 presence data throughout the entire
Sardinian range of A. bedriagae, with a spatial resolution of
few hundreds of meters or higher (fig. 1a). The study area
was intentionally limited to Sardinia in order to focus the
attention on the species conservation status in this island.

Data preparation. Spatial autocorrelation in presence data
was assessed by producing the Moran’s I correlogram
(fig. 2), which allowed to identify the threshold of 1 km
as minimum distance between points for minimizing spa-
tial autocorrelation effect. On the basis of this preliminary
analysis seven points were removed to avoid bias introduced
by clustered distribution of data, and one single point per
cell was used in the analyses. The remaining dataset was
split in ten random repetitions of two subsets. The first group
of subsets, containing between 26 and 37 records (approxi-
mately 55% of data), was used to elaborate the models (train
subset). The second group of subsets, containing between
21 and 32 records (approximately 45% of data), was used
for validation (test subset). A number of pseudo-absence
points, twice the number of original data, were added to
each subset, both train and test. These pseudo-absence data
were generated randomly (Engler, Guisan and Rechsteiner,
2004) within the study area and used for validating all of the
obtained models, as well as for performing the two regres-
sion procedures.
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Figure 2. Moran’s I correlogram for assessing spatial auto-
correlation effect.

Environmental predictors

Variables acquisition. We used as environmental predic-
tors the climatic data provided by WorldClim (version 1.4)
(Hijmans et al., 2004). The WorldClim databanks consist of
climate surfaces with global coverage for 19 climatic vari-
ables (table 1) interpolated using data for the period 1950-
2000. In particular, we adopted the climate surfaces with
pixels of 30′′ of geographic degree, corresponding to a res-
olution of approximately 1 km (see Hijmans et al., 2005
for details). The spatial resolution of 30′′ was maintained
in all of the following analyses as well as in the output.
We utilized climatic variables only as predictors because of
the extremely fine-grain environment perception of reptiles,
which is difficultly captured in land-cover maps (Boitani et
al., 2002).

Variables selection. Climatic predictors were included in
the models according to the specific properties of each algo-
rithm, by adopting different variable selection approaches.

Models production

Six widely used procedures (BIOCLIM, DOMAIN, ENFA,
GLM, GAM, and MAXENT) were applied for defining
the species climatic exigencies on the basis of climatic
data. Each algorithm was calibrated by using all of the ten
independent train repetitions, thus ten different models were
obtained from each different procedure. The ten models
were independently validated and summarized in one mean
model for each algorithm.

BIOCLIM/DOMAIN. BIOCLIM (Nix, 1986) defines the
bounding box enclosing the species records in climatic
hyper-space (e.g. Busby, 1991; Elith and Burgman, 2003;
Farber and Kadmon, 2003; Parra, Graham and Freile,
2004 for details). DOMAIN (Carpenter, Gillison and Win-
ter, 1993) measures the pixel’s Gower distance from the
most similar presence point in the environmental hyper-
space (e.g. Carpenter, Gillison and Winter, 1993; Elith and
Burgman, 2003 for details). BIOCLIM and DOMAIN were
implemented by using DIVA-GIS 5.2 (www.diva-gis.org).
With the aim of avoiding over-parameterization (Kriticos

Table 1. Climatic variables used to elaborate the models.

var1 = Annual mean temperature
var2 = Mean diurnal range (mean of monthly×

(max temp − min temp))
var3 = Isothermality ((var2/var7) ∗ 100)
var4 = Temperature seasonality (standard deviation ∗ 100)
var5 = Maximum temperature of warmest month
var6 = Minimum temperature of coldest month
var7 = Temperature annual range (var5 − var6)
var8 = Mean temperature of wettest quarter
var9 = Mean temperature of driest quarter
var10 = Mean temperature of warmest quarter
var11 = Mean temperature of coldest quarter
var12 = Annual precipitation
var13 = Precipitation of wettest month
var14 = Precipitation of driest month
var15 = Precipitation seasonality

(standard deviation/mean)
var16 = Precipitation of wettest quarter
var17 = Precipitation of driest quarter
var18 = Precipitation of warmest quarter
var19 = Precipitation of coldest quarter

and Randall, 2001; Williams, Bolitho and Fox, 2003) ap-
plying BIOCLIM and DOMAIN, the variables in the final
models were selected by comparing the validation scores of
preliminary univariate models and including only those pa-
rameters with scores higher than a specific threshold value
(i.e. AUC > 0.7; Kappa > 0.4) (Fielding and Bell, 1997;
Tape, 2006).

ENFA. The Ecological Niche Factor Analysis (ENFA)
(Hirzel et al., 2002) compares the distributions of the en-
vironmental variables between the occurrence locations and
the whole study area. This analysis extracts factors that ex-
plain the relationship between species distribution and eco-
logical variables. ENFA does not produce values of habi-
tat suitability directly, but they can be derived combining
the extracted factors. Four different algorithms can be used
to produce, on the basis of the computed factors, maps of
habitat suitability: Median, Distance Geometric Mean, Dis-
tance Harmonic Mean, Minimum Distance (e.g. Hirzel et
al., 2002; Hirzel, Hausser and Perrin, 2004 for details). Bio-
Mapper 3.1 (Hirzel, Hausser and Perrin, 2004) was adopted
to perform ENFA and the relative mapping algorithms.
IDRISI 15.0 Andes (Clark Labs, 1987-2006) was used for
importing and exporting data to and from BioMapper. The
number of variables considered by ENFA does not affect
the resulting models, because this procedure computes a
sort of “factor loading” of each predictor that weights rel-
ative importance of variables (Hirzel et al., 2002; Hirzel,
Hausser and Perrin, 2004). Hence all the variables were
considered together, after the exclusion of those correlated
(variables n◦1, 9, 11, 13, 14, 16, 17, and 19 were excluded).
The factors obtained by ENFA were used to compute the fi-
nal models of habitat suitability by using all of the four algo-
rithms (Median, Distance Geometric Mean, Distance Har-
monic Mean, Minimum Distance), obtaining 10 models for
each of the four mapping algorithms.
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GLM/GAM. Generalized Linear Models (GLMs) (McCul-
lagh and Nelder, 1989) are mathematical extensions of lin-
ear models that allow for non-linearity and non-constant
variance structures in the data (e.g. Guisan, Edwards and
Hastie, 2002; Brotons et al., 2004 for details). Generalized
Additive Models (GAMs) (Hastie and Tibshirani, 1986) are
semi-parametric extensions of GLMs (e.g. Guisan, Edwards
and Hastie, 2002; Brotons et al., 2004 for details): in GAMs
some predictors can be modelled non-parametrically in ad-
dition to linear and polynomial terms for other predictors.
R 2.6.2 (R Development Core Team, 2008) was used to
perform GLMs and GAMs. The two regression methods
(GLM and GAM), with a binomial probability distribu-
tion and a logit link, were fitted for A. bedriagae based
on climatic variables. The climatic predictors were previ-
ously tested for correlation and related variables were ex-
cluded (i.e. r2 > 0.8; variables n◦1, 6, 9, 10, 11, 14, 16, 18,
and 19 were excluded). GLMs were performed including
predictors, chosen after correlation analysis, in the linear
form only. Variables in the models were selected through a
stepwise procedure based on Akaike’s Information Criterion
(AIC; Akaike, 1974) that operates, both backward and for-
ward, by excluding and adding variables one by one from an
initial full model, and comparing the resulting AIC values.
Similarly, an AIC-based selection of predictors was applied
to calibrate our GAMs: this stepwise procedure excludes
and adds predictors from the initial model to minimize the
AIC score.

MAXENT. In order to estimate the target probability dis-
tribution, MAXENT (Phillips, Dudik and Schapire, 2004;
Phillips, Anderson and Schapire, 2006) finds the proba-
bility distribution of maximum entropy that is constrained
by considered ecological parameters (e.g. Phillips, Dudik
and Schapire, 2004; Phillips, Anderson and Schapire, 2006;
Peterson, Papes and Eaton, 2007 for details). MaxEnt 3.1
(Phillips, Anderson and Schapire, 2006) was utilized to ap-
ply MAXENT approach. Because MAXENT can combine
predictors to manage over-fitting by regularizing factors
(Phillips, Anderson and Schapire, 2006; Phillips and Dudík,
2008), we performed this algorithm by using all of the cli-
matic variables.

Models validation

For validation purposes, we adopted two of the most
widely used procedures (e.g. Pearce and Ferrier, 2000; Elith,
Burgman and Regan, 2002; Lehmann, Overton and Leath-
wick, 2002; Zaniewski, Lehmann and Overton, 2002; Se-
gurado and Araújo, 2004; Elith et al., 2006). The first
method compares the predicted values of habitat suitabil-
ity assigned to presence and pseudo-absence data in the
test subset by producing the “Receiver Operating Charac-
teristic” (ROC) plots (Fielding and Bell, 1997) and deriv-
ing the relative “Area Under Curve” (AUC) value (Faraggi
and Reiser, 2002). The main positive feature of this proce-
dure consists of being a single threshold-independent mea-
sure for model performance (Manel, Williams and Ormerod,
2001; Lehmann, Overton and Leathwick, 2002; Thuiller,
2003; Brotons et al., 2004; McPherson, Jetz and Rogers,

2004; Thuiller, Lavorel and Araújo, 2005; Allouche, Tsoar
and Kadmon, 2006; Peterson, Papes and Eaton, 2007). Sec-
ondly, the maximum Kappa (Cohen, 1960) was calculated.
Cohen’s kappa (Shao and Halpin, 1995; Manel, Williams
and Ormerod, 2001; Loiselle et al., 2003; Petit et al., 2003;
Berg, Gardenfors and Von Proschwitz, 2004; Parra, Gra-
ham and Freile, 2004; Pearson, Dawson and Liu, 2004;
Rouget et al., 2004; Segurado and Araújo, 2004) corrects
the overall accuracy of model predictions by the accuracy
expected to occur by chance. Other advantages of Kappa
are its simplicity, the fact that both commission and omis-
sion errors are accounted for in one parameter, and its rela-
tive tolerance to zero values in the confusion matrix (Manel,
Williams and Ormerod, 2001; Allouche, Tsoar and Kad-
mon, 2006). Generally, the validation score are considered
excellent if 0.9 < AUC < 1 and 0.75 < Kappa < 1, good
if 0.80 < AUC < 0.90 and 0.4 < Kappa < 0.75, fair if
0.70 < AUC < 0.80, poor if 0.60 < AUC < 0.70 and
Kappa < 0.4, and fail if 0.50 < AUC < 0.60 (e.g. Landis
and Koch, 1977; Fielding and Bell, 1997). All of the mod-
els were validated in DIVA-GIS by using the test subsets,
obtaining ten AUC and Kappa values for each modelling
approach.

Models comparison

In order to evaluate the predictive performances, we com-
pared the ten AUC values of each modelling procedure
for finding non-random differences and, therefore, identify-
ing homogeneous groups of algorithms. We adopted a Null
Models approach for performing such comparison, contrast-
ing the observed Anova F index with those simulated by
3 × 104 random Monte Carlo permutations in EcoSim 7.0
(Gotelli and Entsminger, 2001). This number of permuta-
tions ensures that algorithm biases are avoided (Lehsten and
Harmand, 2006). Random simulations were generated by
shuffling the repetition algorithms and retaining the original
AUC values of single repetitions (Gotelli and Entsminger,
2001). F index was calculated for the original data as well
as for the simulated matrices and results were compared,
calculating the probability (P ) of the null hypothesis that
the observed F index (Fobs) was drawn at random from
the distribution of the simulated F indexes (Fexp) (Edging-
ton, 1987; Gotelli, 2000). Non-random differences were as-
sumed when PFobs!Fexp ! 0.05 (Gotelli and Graves, 1996).

Ensemble

The mean models obtained by summarizing the ten repeti-
tions of the best four techniques (according to their AUC
scores) were combined by means of the weighted average
consensus method (Araújo and New, 2007; Marmion et al.,
2008). The habitat suitability of the ith grid cell (HSi ) in the
consensus model was calculated as:

HSi =
∑

j (AUCmj × mji)∑
j AUCmj

,

where mji are the probability of presence of A. bedriagae in
the ith grid cell as predicted by the model elaborated with
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the j th algorithm. ArcGIS 9.2 (ESRI Inc., Redlands, CA,
USA) was utilized for summarizing the ten repetitions of
each procedure and for producing the consensus model.

Results

Single-models performances

The predictive performances of the adopted al-
gorithms were non-homogeneous. BIOCLIM
obtained medium AUC and Kappa values
(AUC = 0.779 ± 0.075, Kappa = 0.569 ±
0.141, fig. 1b). DOMAIN got high validation
scores (AUC = 0.876 ± 0.036, Kappa =
0.688 ± 0.069, fig. 1g). Models derived by
ENFA reached medium values (Median: AUC =
0.771 ± 0.050, Kappa = 0.587 ± 0.085, fig. 1f;
Minimum Distance: AUC = 0.765 ± 0.066,
Kappa = 0.493 ± 0.100, fig. 1e; Distance
Harmonic Mean: AUC = 0.739 ± 0.066,
Kappa = 0.461 ± 0.103, fig. 1d; Distance Geo-
metric Mean: AUC = 0.718 ± 0.054, Kappa =
0.436 ± 0.072, fig. 1c). GLM produced models

with high validation values (AUC = 0.889 ±
0.041, Kappa = 0.721±0.053, fig. 1h). Models
obtained through GAM procedure reached very
high AUC and Kappa (AUC = 0.929 ± 0.026,
Kappa = 0.768 ± 0.078, fig. 1j). Predictions
generated by MAXENT got very high AUC
and Kappa (AUC = 0.929 ± 0.031, Kappa =
0.776 ± 0.075, fig. 1i).

Models comparison

The Anova performed through Monte Carlo
procedure for comparing predictive perfor-
mances of competing methods revealed three
significantly different groups of algorithms
(fig. 3). The first group, homogeneous in terms
of AUC values (Fobs = 0.001, PFobs!Fexp =
0.977), comprises GAM and MAXENT. This
group obtained validation values significantly
higher (Fobs = 18.943, PFobs!Fexp < 0.001)
than values reached by GLM and DOMAIN,
which have similar performances (Fobs =

Figure 3. Predictive performance of the competing algorithms. Mean and standard deviation of AUC and Cohen’s maximum
Kappa obtained by the ten repetitions of the applied procedures.
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0.481, PFobs!Fexp = 0.492). GLM-DOMAIN
obtained AUC values significantly higher (Fobs =
59.764, PFobs!Fexp < 0.001) than the third
group, composed by BIOCLIM and the four
mapping algorithms of ENFA. This group in-
cludes procedures with homogeneous AUC val-
ues (Fobs = 1.550, PFobs!Fexp = 0.201),
but ranging between a relatively large interval
(0.779 [BIOCLIM] −0.718 [ENFA − Distance
Geometric Mean]). In addition, the algorithms
belonging to this group have a standard de-
viation significantly higher (Fobs = 24.395,
PFobs!Fexp = 0.007) than the standard deviation
of the two best groups.

Variables importance

Three variables (“Maximum Temperature of
Warmest Month”, “Isothermality”, and “Pre-
cipitation Seasonality”) produced the best mod-
els using BIOCLIM (respectively: Mean
AUCvar5 = 0.813, Mean AUCvar3 = 0.759, and
Mean AUCvar15 = 0.720) and four (“Precipita-
tion Seasonality”, “Isothermality”, “Maximum
Temperature of Warmest Month”, and “Mean
Diurnal Temperature Range”) using DOMAIN
(respectively: Mean AUCvar15 = 0.833, Mean
AUCvar3 = 0.815, Mean AUCvar5 = 0.793, and
Mean AUCvar2 = 0.770).

ENFA showed the importance of “Precipi-
tation of Warmest Quarter”, “Precipitation of
Driest Month”, “Precipitation of Driest Quar-
ter”, and “Annual Precipitation” that made the
highest contribution to marginality (i.e. mean
score > 0.15). “Precipitation of Warmest Quar-
ter” (mean score = 0.40) had the highest score
ten out of ten times. “Precipitation of Driest
Month” (mean score = 0.36) got the second
highest score eight out of ten times. “Precipi-
tation of Driest Quarter” (mean score = 0.28)
reached the third highest score six times. “An-
nual Precipitation” (mean score = 0.15) got the
second highest score two times.

GLMs and GAMs evidenced the importance
of “Mean Temperature of Wettest Quarter” (se-
lected eight out of ten times by both GLM and
GAM), “Temperature Seasonality” (selected six

out of ten times), and “Isothermality” (selected
five out of ten times).

“Isothermality”, “Mean Diurnal Temperature
Range”, “Maximum Temperature of Warmest
Month”, and “Precipitation Seasonality” made
the most important contribution to MAXENT
(i.e. mean contribution > 15%). In particular,
“Isothermality” (mean contribution = 25.91%)
was the most important variable five out of
ten times, “Mean Diurnal Temperature Range”
(mean contribution = 21.13%) four times,
“Maximum Temperature of Warmest Month”
(mean contribution = 17.25%) one time, and
“Precipitation Seasonality” (mean contribution =
15.08%) appeared as the second most important
parameter three out of ten times.

Habitat suitability pattern

The best models shared a common geographic
pattern as highlighted by the consensus model
(fig. 1k). The range fragmentation of Bedriaga’s
rock lizard in Sardinia was evidenced. Three
main sub-ranges in eastern Sardinia were iden-
tified. In addition, one thin corridor of suit-
ability in central Sardinia, corresponding with
Marghine and Goceano mountain chains, and
two smaller areas of potential presence in the
South-East of the island, corresponding with
Mount Genis and Mount Settefratelli, can be ob-
served.

Discussion

Models performances

GAM regression analysis and MAXENT are the
best procedures, among those we tested, in esti-
mating climatic exigencies and modelling habi-
tat suitability for A. bedriagae in Sardinia. This
result is partially in agreement with previous
comparative analyses of different modelling ap-
proaches (e.g. Elith et al., 2006), which high-
lighted MAXENT as one of the top-performing
algorithms. In contrast, the extremely good
models obtained by GAM – significantly bet-
ter than results of GLM – were in some mea-
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sure unexpected, and they are probably due to
the particular relationship between the presence
of this species and the climatic predictors that
is difficultly described by the linear combina-
tion of explanatory variables utilized in GLM.
This partially unexpected result puts in evidence
the strong influence played by the target species
ecology and distribution on the efficiency of dif-
ferent modelling procedures.

The regression approaches utilized in GLMs,
including predictors in linear form, as well as
the Gower metric utilized by DOMAIN still ap-
pear as good methods in modelling the poten-
tial distribution of our target species. The sim-
ilar results obtained by these two algorithms
are partially surprisingly, being shown in pre-
vious papers (Segurado and Araújo, 2004; Elith
et al., 2006) the relatively scarce performances
of DOMAIN. This unexpected good efficiency
of DOMAIN is probably due to the complex
influences of climatic predictors on Bedriaga’s
rock lizard distribution and to the relatively low
number of records, which are particularly fitted
to be described by the Gower distance analysis
(Guisan and Zimmermann, 2000).

The simple bounding box computed by BIO-
CLIM, as well as the pseudo-PCA performed
by ENFA, are acceptable methods when used
in defining a general pattern of distribution
and particularly helpful if applied in prelimi-
nary analyses (Engler, Guisan and Rechsteiner,
2004). In fact, from our results, it is clear
that the pattern of suitability predicted by
these two approaches (fig. 1b-f) is, with the
obvious differences and uncertainties, similar
to those produced by more performing meth-
ods (fig. 1g-j). The comparable efficiency here
demonstrated for BIOCLIM and ENFA is in
accordance with previous studies (Tsoar et al.,
2007), which highlighted similar performances
for these two algorithms. On the other hand,
Tsoar et al. (2007) did not obtain differences
between BIOCLIM-ENFA and DOMAIN as we
found.

Regarding the four mapping algorithms ap-
plied to ENFA results, we observed some dif-

ferences in terms of predictive performances. In
particular, Median appears the best one, in ac-
cordance with the suggestions of Hirzel et al.
(2002), and Distance Geometric Mean seems
the worst. Nevertheless, it should be taken into
account as Null Models analysis demonstrated
that such differences could be occurred by
chance.

Methods comparison and ensemble approaches

On the one hand, it should be noted that the
only other published model of habitat suitabil-
ity for A. bedriagae (Boitani et al., 2002) is
not updated in terms of faunistic knowledge. In
addition, such model was produced through a
deductive approach, based on expert judgment,
which is hard to be applied to amphibians and
reptiles (Boitani et al., 2002) that are charac-
terized by a scale of environment perception
different from the scale of the considered eco-
geographic variables. On the other hand, our re-
sults of model performances are partially differ-
ent from those of previous papers (e.g. Segurado
and Araújo, 2004; Elith et al., 2006; Tsoar et al.,
2007). This evidence demonstrates the strong
influence of the target species’ ecology and dis-
tribution on the predictive performances of dif-
ferent modelling techniques and highlights the
importance of multi-methods approaches in pre-
dicting species distribution. On its turn, if con-
servation issues should be addressed, this influ-
ence makes particularly important the adoption
of consensus methods for deriving one univocal
prediction from an ensemble of different models
(Araújo and New, 2007; Marmion et al., 2008).

Variables importance

The Sardinian distribution of A. bedriagae is
mainly influenced by seasonality in terms of
both temperature and precipitation. In fact,
“Isothermality” was evidenced as an important
predictor by all of the modelling procedures
but ENFA. Moreover, “Precipitation Seasonal-
ity” and “Temperature Seasonality” were im-
portant variables in three and two out of six
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procedures respectively. These variables have a
negative effect on A. bedriagae and this could
be one of the causes of its absence from west-
ern Sardinia, which is characterized by marked
seasonality and, more specifically, by high val-
ues of Isothermality (fig. 1l). Nevertheless, also
extreme values in temperature influence the
Bedriaga’s rock lizard distribution. “Maximum
Temperature of Warmest Month” was an impor-
tant predictor in three out of six modelling pro-
cedures, causing that the species is distributed at
low altitudes in the coastal and sub-coastal areas
of north-eastern Sardinia only, which is char-
acterized by relatively low maximum summer
temperature. This result puts in evidence that
our target species is relatively not thermophy-
lous, being excluded from the areas character-
ized by extremely high summer temperatures.
At the light of this scenario, it is possible to hy-
pothesize that extreme climatic seasonality can
affect lizard survivorship by influencing its sea-
sonal activity pattern.

Obviously, many other factors may interact
for influencing the actual species distribution.
Among these adjunctive parameters, interspe-
cific interactions, phylogeographic constrains,
as well as suitability of microhabitat conditions,
and topographic situations can certainly play a
crucial role in shaping species range. Neverthe-
less, such variables can only act as limiting fac-
tors within a general climatic suitability, reduc-
ing the real probability of occurrence in a spe-
cific area despite of its suitable climatic condi-
tions.

Conservationist conclusions

In terms of general conservation strategy, the
evident differences between the unique avail-
able model for A. bedriagae distribution and
our results strongly sustain the importance of
overcoming the Italian Ecological Network ap-
proach to amphibians and reptiles. It should be
addressed by supporting the future use of mul-
tiple modelling techniques in predicting the po-
tential range of species belonging to the Italian
herpetofauna.

More concretely, this paper represents a help-
ful instrument for optimizing the initiatives
aimed at the conservation of A. bedriagae, as
well as for focalizing the conservation measures
toward the most critical populations. The distri-
bution predicted by our models puts in evidence
the strong isolation from the main subranges of
certain areas, such as Mount Genis and Mount
Settefratelli in south-eastern Sardinia as well
as Marghine and Goceano Mountains in cen-
tral Sardinia. These isolated areas require spe-
cific attention by conservationists for avoiding
local extinction under dynamic environmental
conditions. Indeed, such peripheral suitable nu-
clei are particularly exposed to threats from sto-
chastic phenomena (e.g. diseases), as well as
from changing climate that could drive these ar-
eas out of the species envelope.
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