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Abstract: Sexual selection contributes to the diversity of chemical signals in various animal groups.
Lizards are good model species to study how sexual selection shapes signal diversity, as they are a
chemically oriented taxonomic group with different levels of social interactions. Many lizard species
bear epidermal glands secreting a waxy mixture of lipids and proteins, which are used in intraspecific
communication. Previous among-species comparative analyses failed to find a relationship between
the strength of sexual selection with the composition of the lipid blend in lizards. Here, we extend
the investigation to the proteinaceous fraction. By using a phylogenetically informed approach, we
correlated the average electrophoretic profiles of the protein from the femoral glands of 36 lacertid
lizard species with the level of sexual dimorphism in size and shape, which are proxies for the strength
of sexual selection. We found that as sexual size dimorphism advances, five distinct molecular weight
regions in the protein profile increased their expression. Using tandem mass spectrometry, we
successfully identified one of these five proteins: a carbonic anhydrase—an enzyme catalyzing the
reversible hydration of carbon dioxide. Our findings suggest that proteins may be the target of sexual
selection, as an active semiochemicals or as a dynamic support to other molecules: sexual selection
may act indirectly on semiochemicals (namely lipids) by modifying the matrix (namely proteins).

Keywords: chemical communication; sexual selection; sexual dimorphism; proteins; carbonic
anhydrase; femoral glands; Lacertidae

1. Introduction

While less conspicuous to humans than other sensory modalities, chemical signals are
the most ubiquitous form of information exchange in the natural world and their diversity
is probably comparable to or even greater than that of visual and acoustic signals [1-4]. As
such, the same questions about the mechanisms responsible for the origin and evolution
of signal diversity in the visual and acoustic sensory channels also apply to the chemical
modality [5-7], and sexual selection should be considered a key driver [8-11]. Both experi-
mental and correlative studies have indeed shown how sexual selection can influence the
evolution and design of chemical signals involved in both mate choice as well as intrasexual
competition [9-11].

Lizards are a well-known chemically oriented vertebrate group [12,13], and in the
last decade, they have increasingly been used as a model system to study chemical com-
munication [14,15]. Recently, the occurrence and degrees of sociality in lizards have been
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linked to the species’ investment in chemical signaling [16], highlighting the importance
of chemical communication in mediating intraspecific interactions. Lizards, indeed, use
chemical signals to inform conspecifics about a variety of “socially interesting” features
(e.g., territory ownership, individual identity, familiarity, size, parasite loads, health sta-
tus, fighting ability, immune-response [17-27]). Further, specialized secretory structures
show a male-biased sexual dimorphism in most species [28,29], combined with an activity
that peaks during the reproductive season [30-32]. Together, all these observations lead
to the hypothesis that sexual selection may play a pivotal role in the evolution of lizard
chemical signals [33].

A first attempt to test whether and how sexual selection has contributed to shap-
ing lizard chemical signal diversity focused on the Lacertidae family [33]. Lacertids are
distributed over much of Eurasia and Africa and include about 350 species of typically
small-to-medium-sized lizards [34-36]. Chemical communication has been extensively
studied in lacertids over the last 15 years or so, notably concerning the femoral glands
(FG) [14,15,29,37]. FG secretions consist of waxy protein-lipid mixtures [29,38], both com-
ponents being active in communication [26,37,39,40]. Lipids, being more volatile and easily
associated with male quality- and condition-related traits, have been historically considered
of superior importance in functioning as semiochemicals compared to proteins [2,29,37,41].
On this basis, Baeckens and colleagues [33] reconstruct the evolutionary history of the lipid
fraction of the secretions across the Lacertidae phylogeny but were not able to detect any
significant effect of sexual selection on trait evolution: lipid composition, richness, and
diversity did not covary with the expression of sexual dimorphism in shape or size, used
as proxy for the strength of sexual selection [33]. Among the many possible interpretations
of this unexpected outcome proposed by the same authors, it was pointed out that the indi-
rect measures of signal structure (proportion of the main lipid categories) and complexity
(number and diversity of compounds) might not have captured the signal features actually
targeted by sexual selection [33]. Here, we put forward the possibility that the inclusion of
the protein fraction in the analysis may add valuable information to the above-mentioned
approach, at least because of three confirmed qualities of FG proteins, i.e.: (i) the occurrence
of intraspecific variability at individual level in protein profiles [38,42,43]; (ii) the capability
of proteins alone to convey socially relevant information to conspecifics [26,39,40]; and
(iii) the seasonal variation in the relative abundance of the protein components, which
follows the reproductive cycle and is synchronous to that of lipids [30]. The synchronized
variation in protein abundances with lipids leads us to hypothesize that proteins may be
involved in sexual signaling [44], therefore also being a potential target for sexual selection
to act on, which eventually contributes to the observed diversity of FG proteins [43,45].

With the present study, we aimed to assess whether sexual selection may have con-
tributed to the variability of the protein fraction of FG secretions. Following [33], we
applied a phylogenetically informed generalized least square models to the protein profiles
of 36 lacertid species [46], using the level of sexual dimorphism as a proxy for the strength
of sexual selection [33]. We then used tandem mass spectrometry to identify the potentially
involved proteins.

2. Materials and Methods
2.1. Data Collection

We assembled three distinct datasets at the species level for the Lacertidae family,
notably concerning: (i) the proteinaceous composition of the femoral gland secretions;
(i) the average body and head measures of males and females, upon which to build sexual
dimorphism indexes; and (iii) the phylogenetic tree of the species. Overall, the datasets
included complete information about 36 lacertid species.

The information about the composition of the femoral gland proteins were obtained
from the already published data [46]. Data consisted of species-level one-dimensional
normalized electrophoretic profiles (electrophoretograms, EPGs) from 36 lacertid species.
Data came only from males, since they were not available for females, which, at least in the
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considered species, bear almost vestigial glands [29,47] or produce very little amounts of
secretion [48,49]. Each specific EPG corresponds to a sequence of 300 values representing
the relative amount of protein clusters ordered by their molecular weight and averaged
across individuals from the same species [50]. Although some degree of within-species
variability can occur [38,46], such variation is less than the among-species one [46] and
typically affects the relative height of some peaks rather than the overall band pattern [46].
Therefore, we can reasonably assume EPGs to represent a raw proxy of species FG protein
composition [30,42,46,51]. Indeed, protein identification is still challenging [45,52], and,
as far as we are aware, proteins from femoral gland secretions have been characterized in
only two lizards [43,45], one of which does not belong to the lacertid family (but see [42]).
For the same reason, as a working hypothesis, we assumed that each electrophoretic band
corresponded to a single protein.

Following Baeckens et al. [33], for each species, we computed two indexes of sexual
dimorphism (SD), which may be used as proxy for the strength of sexual selection [33].
The first is a sexual size dimorphism index (SSD) obtained as the ratio of the snout-to-vent
length (SVL) of males compared to females (SVL; /SVLe) when males were larger than
females, and 2-(SVLo /SVL,) if the opposite occurred [53,54]. This way, values larger than
one indicate male-biased SSD, while values lower than one are for female-biased SSD. In
lizards, male-biased SSD is usually associated with the increase in male-male intrasexual
competition [55-57], since larger males are favored in male-male combats [58,59]. Besides
overall size, head size also affects male fighting abilities [60,61]. Consequently, male-
biased SD in relative head dimensions can also be informative about the strength of
intrasexual competition and therefore sexual selection [33,57]. We computed the sexual
head dimorphism index (SHD) using the same formulas as for SSD, by substituting SVL
with the relative head size (head length/trunk length). The morphometric measures needed
for the computation of SSD and SHD indexes were obtained from the literature (Table S1).

Finally, the phylogenetic tree of the 36 considered species was obtained by pruning
the lacertid phylogenetic available in [36]. We used the keep.tip function of the ape R
package [62] to subsample it to match the 36 species included in the study.

2.2. Statistical Analysis

To assess the occurrence of any effect of the strength of sexual dimorphism on the
composition of the protein fraction of the femoral gland secretions, we used multivari-
ate phylogenetic generalized least squares (pGLS) models, adapted to high-dimensional
datasets [63]. In such a model, the matrix of normalized EPG (proxy for protein composi-
tion) was the response variable, while SSD and SHD entered the model as predictors. Being
compositional in their nature, EPGs were centered-log-ratio transformed before entering
the analysis [64,65].

To account for the phylogenetic dependency of the data, the correlation structure of
the error was set according to five different models of continuous trait evolution: Brownian
motion (BM), Ornstein—Uhlenbeck (OU), early burst (EB), late burst (LB), and Pagel’s A
(PA). The best model was then selected according to the Extended Information Criterion
(EIC), an equivalent of the Akaike Information Criterion suited for models fitted using
penalized likelihood [63]. The significance of the SSD and SHD terms were assessed for the
best model using a permutational MANOVA [66]. All the analysis were implemented in
R v.4.1.2 [67], using the package mvMORPH [68].

2.3. SSD-Related Protein Identification

Phylogenetic GLS highlighted a significant effect of SSD on EPGs (see results). To
identify the potentially involved proteins, we ran novel electrophoretic shots for those
samples (Acanthodactylus scutellatus, Gallotia stehlini, see results) showing the highest EPGs
peaks just in the molecular region associated with the increase in SSD. Sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of the selected samples followed
the methodology described in [30]. From the fresh gels, we excised the bands of the regions
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of interest (Figure S1) and individually prepared them for mass spectrometry analysis
adapting procedures from [69] (see Supplementary Material M1). Mass spectrometry (MS)
analyses were carried out with a LC unit (ExionLCTM AD) equipped with a column
oven thermostated at 40 °C, an autosampler cooled at 10 °C, and a binary gradient pump
system. The MS instrument consists of a high resolution QTOF mass spectrometer (X500B,
AB Sciex LLC, Framingham, MA, USA) equipped with a Turbo V Ion source and a Twin
Sprayer ESI (electrospray ionization) probe, controlled by SCIEX OS v2.1 software (AB Sciex
LLC, Framingham, MA, USA) (see Supplementary Materials M1 for setting details).

We performed protein identification via peptide-spectrum matching [52,70] using
MS-GF+ v2022.01.17 [71,72]. We set the algorithm as follows: tolerance, 20 ppm; charge
range, 1-6+; range of peptide length, 6-70; isotope error 0-1 Da; cleavage, tryptic; and
post-translational modification, fix carbamidomethylation of cysteine [52,73,74]. Since no
ad hoc database was available for the study species, searching was performed against
UniProt dataset [75], after filtering for the taxonomic family “Lacertidae” (taxonID = 8522).
To control for contaminants, we added pig trypsin sequence (accession: sp |P00761) to the
database. The final dataset included 46,935 unique sequences. Only spectra with false
detection rate (FDR) < 0.01 were considered. All the above operations were implemented
in R v4.1.2 [67], using the packages mzID v 1.28.0 [76], Biostrings v2.46.0 [77] and ad hoc
functions to prepare database and call external software (MSGF+).

3. Results

The expression of sexual dimorphism is quite variable across the 36 considered species
(Figure 1), both considering body size (SSD) and head size (SHD), with nine cases and
one case of female-biased SSD and SHD, respectively. Furthermore, SSD and SHD did not
behave coherently, almost showing a negative correlation, which highlights that the two
indexes might be related with different behavioral traits (as discussed in [33]).
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Figure 1. Phylogenetic map of the expression of sexual size dimorphism (SSD; left tree) and sexual
head dimorphism (SHD; right tree) in the 36 lacertid species included in this study. Light blue
and asterisk indicate female-biased dimorphism; the orange gradient represents the intensity of
male-biased dimorphism.

According to EIC, the best evolutionary model explaining SD-EPG relations was LB,
which performed slightly better than OU and much better than EB, PA, and BM (Figure 2).

Permutational MANOVA of the best model highlighted a significant effect of SSD
(Pillai’s trace = 0.613, p < 0.046; 9999 permutations), while SHD had no effect (Pillai’s
trace = 0.523, p < 0.403; 9999 permutations). Keeping constant SHD, an increase in SSD
corresponded to a raise in the concentration of proteins from five main molecular regions
of the predicted EPG, approximately at 9.0, 13.5, 17.9, 35.4, and 66.3 kDa (Figure 3).
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Figure 2. Bootstrapped extended information criterion (EIC) values for the five evolutionary models
used to account for the phylogenetic dependences between protein electrophoretic profiles and sexual
dimorphism in the phylogenetic generalized least squares model. Solid lines = mean value; shadowed
rectangles = £1 SE interval around the mean; grey points = observed bootstrapped value for each
model (100 in total). The best model (lowest EIC) is dark-red colored.
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Figure 3. Predicted protein profiles following male-biased sexual size dimorphism (SSD) increase.
Left side: predicted electrophoretic profile (EPG) spanning from the absence of SSD (unit value;
light blue) to the maximum (orange) observed SSD. Right side: virtual gel lane corresponding to the
predicted EPG at the unit (light blue) and maximum (orange) SSD value, respectively: these are a
translation of the relative peak heights of the profiles reported in the left side into a color intensity
strip resembling a gel lane theoretically obtainable in a virtual electrophoretic run. Dotted boxes
A-E denote the molecular region most associated with the SSD increase, which were the focus of the
MS analysis.
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SSD-Related Protein Identification

The species showing the highest EPG peaks in the region associated by pGLS with
SSD were Acanthodactylus scutellatus, for the lower bands, at 9.0 and 13.5 kDa (bands A, B;
Figure 3), and Gallotia stehlini, for the upper ones at 17.9, 35.4, 66.3 kDa (bands C, D, E;
Figure 3). The novel SDS-PAGE allowed identifying the target bands (Figure S1), which
were excised and analyzed by MS.

Peptide-spectrum matching against Lacertidae database allowed identifying peptide
sequences from all samples (Table S2). After filtering by contaminants (i.e., pig trypsin)
and FDR < 0.01, only bands B, C, and D produced reliable identifications at peptide level
(Table 1): two spectra matched three different database entries for band B; a single peptide
was selected for band C and D. The above results prevent any identification at protein
level. Nonetheless, considering the high scores, the relative coverage, and the approximate
correspondence of predicted molecular weights with band positions in the gel, two peptide
identifications may be also credible at protein level (Table 1): UPAR/Ly6 domain-containing
protein (band B) and carbonic anhydrase (band D). Since the lack of specific databases for
the considered species may have lowered the power of peptide-matching search [52,78], we
tried refining the analysis of MS data from these bands by building ad hoc protein datasets
basing on the outcomes of the first analysis [79]. Notably, we extracted from UniProtKB [75]
all those protein sequences sharing at least one third of the amino acids with the two
potentially identified proteins (uniprotID: AOA670IP55; AOA670JE51). We used BLASTP
v.2.12.0 [80,81], available as an online tool on the uniport.org platform, to retrieve the
target sequences. If the protein was correctly identified, we expected peptide-matching to
improve its performance and to match more entries than against the Lacertidae database.
Therefore, we re-ran the peptide-matching search against the above-obtained UPAR/Ly6
database (372 sequences) for band B, and Carbonic anhydrase database (990 entries) for
band D. The approach was revealed as useful for band D (carbonic anhydrase; Table 2),
for which three more peptides were identified, matching fish sequences, and making the
protein identification credible. The performance was poor for band B (UPAR/Ly6 domain-
containing protein; Table 2), with only a single peptide added to the list, thus not providing
enough support to protein identification.

Table 1. List of the identified peptides with a false detection rate below 0.01. For the complete list, see
Table S2. Band = gel region considered in the MS analysis as in Figure 3 and Figure S1; ID = spectrum
ID; score = MSGF+ spectrum E-value (—log10 transformed); error = difference between measured and
calculated parental ion mass (Da); UniProtID = unique uniprotKB identifier; description = uniprotKB
description; coverage = percent protein sequence covered by the identified peptide; MW = predicted
molecular weight (kDa) of the corresponding protein.

Band ID Peptide Score Error UniProtID Description Co‘(l;r)age MW
o
3544  SCIDTELCDVGYGSASITSSMYIQSK 9.374 0.036 AO0A670IP55 UPAR/Ly6 domain-containing protein 17.81 15.8
B 2948 AHDGIR 8.026 —0.009 A0A670JC88 Zinc finger protein 436-like 1.16 58.8
SWI/SNF-related matrix-associated
2948 AHDGLR 8.026 —0.009 A0A670]YQ1 actin-dependent regulator of chromatin 0.61 109.1
subfamily A-like protein 1
C 3168 QMIKINFK 8.341 —0.005 A0A670KI84 COP9 signalosome complex subunit 2 1.78 524

D 3157 YSMELHIVHTK 14.856 0.005 AO0A670JE51 Carbonic anhydrase 4.25 28.4
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Table 2. List of the identified peptides with false detection rate below 0.01 using ad hoc databases for
UPAR/Ly6 and Carbonic anhydrase. Headings as in Table 1; already identified peptide sequences
are italicized; identity = % sequence identity with the query protein in BLASTP.

Identity Coverage

Band D Peptide Score Error UniProtID (%) Description Organism (%) MW
o o

B 3544 SCIDTELCDVGYGSASITSSMYIQSK 9.434 0.036 A0A670IP55 100.0 UPAR/Ly6 domain- Podarcis muralis 17.81 15.8
2908 REERPR 5.558 —0.008 A0A8C5QXT2 374 containing protein Leptobrachium leishanense 2.76 231

3157 YSMELHIVHTK 14.836 0.005 AO0A670JE51 100.0 Podarcis muralis 425 28.4

D 3184 EPITHYIPACRQVNR 6.191 0.970 ADASCIL806 414 Carbonic anhydrase Cyprinus carpio 444 36.9
2893 MELHVVNK 6.191 1.020 AOAG6P6QLIT 38.2 anhydra Carassius auratus 248 35.8

3816 ANDSSALAVLGFFIEGTDEADK 5.667 0.982 Q08C20 38.6 Danio rerio 6.79 35.1

4. Discussion

Sexual size dimorphism correlates with the protein electrophoretic profiles of femoral
glands secretions across the Lacertidae family. Five distinct molecular weight regions in the
profile increased their expression with increasing SSD level. Out of these five proteins, one,
at 35.4 kDa (band D, Figure 3), was successfully identified via tandem mass spectrometry,
namely carbonic anhydrase, an enzyme catalyzing the reversible conversion of carbon
dioxide into bicarbonate [82].

The significant relationship between SSD and EPGs suggests that sexual selection
contributes to shaping the chemical signal design in lizards. Previous studies that focused
on single species found FG secretions to impact both mate choice [18,83-87] and male
intrasexual competition [20,23,88-91]. Further, specific compounds have shown to convey
information about male quality-related traits, such as immunity, parasite load, and fighting
abilities [17,19,20,27], implying that FG secretions act as sexual signals and, consequently,
should be governed by sexual selection. In this light, our findings, based on a multi-species,
phylogenetic approach, provide general support to this hypothesis, and bring along more
specific underlying questions: i.e., how are proteins involved in sexual signaling, and how
does sexual selection act on them. Unfortunately, the lack of a complete identification of
the target proteins allows us to just delineate some possible interpretative scenarios.

On the one hand, being active in communication [26,39,40], FG proteins may convey
information about male quality, which can be used to drive decision making (i.e., mate
selection, rival assessment [14,33,85,90]), thus offering the basis for sexual selection to act
on [8,37,92]. Aside from the semiochemical function of proteins, there is weak support for
such interpretation: the occurrence of variation in EPGs at inter-individual level [38,42,43];
the EPGs changes between the reproductive and non-reproductive season [30]. Unfor-
tunately, in the few studies investigating this aspect, no direct correlation was found
between protein composition and traits linked to the signaler’s quality (e.g., size or body
condition [30,38]). Furthermore, in the two lizard species (i.e., the Galapagos marine
iguana, Amblyrhynchus cristatus, and the sand lizard, Lacerta agilis) for which FG proteins
have been preliminarily characterized, no proteins easily relatable to such functions have
been identified [43,45].

Although peptides and proteins may be actually used in sexual communication in
other vertebrates (e.g., [44,93-95]), in lizards they are more probably involved in conveying
identity-related, rather than quality-related, information [26,40,46,69]. From this perspec-
tive, it could be argued that proteins associated with SSD increase may allow for a more
accurate individual discrimination: it could indeed be expected that distinguishing among
very similar individuals may become pivotal when sexual selection is stronger and the cost
for inaccuracy higher [25,90,96,97].

An alternative interpretation is suggested by the only identified protein among those
associated with SSD increase. Carbonic anhydrase is a basic and ubiquitous enzyme [98],
also found in vertebrate secretions (e.g., milk, saliva, tears [99-101]). The same enzyme
has also been identified in the FG secretions of Galapagos marine iguana [45] and sand
lizard [43], making our identification in Gallotia stehlini even more robust and reliable. By
catalyzing the hydration of carbonic dioxide, carbonic anhydrase fundamentally acts on
system homeostasis [99], conferring FG secretion the potential ability to react to the chemo-
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physical changes caused by the environmental conditions where it is left [45]. By extension,
FG proteins may provide dynamic support to the other components of the mixture, eventu-
ally determining the overall chemo-physical characteristics of the signal or influencing the
semiochemical properties of specific compounds. In the Asian Elephant [102], for example,
female urine is enriched with a serum albumin, which serves for transport, to extend
lifespan, and to improve detection by males via the sexual pheromone, (Z)-7-dodecenyl
acetate. This way, sexual selection has favored the recruitment of an already available
protein for a novel function, supporting that of the semiochemical [102]. Similarly, in mice,
major urinary proteins (MUPs), besides working as semiochemicals conveying individual
identity information themselves, bind volatile molecules (e.g., dehydro-exo-brevicomin
and 2-sec-butyl-4,5-dihydrothiazole) used by females to assess the signaler status and for
mate choice [102]. MUPs are able to extend and enhance the effectiveness of the airborne
small molecules [103]. In this case, sexual selection has promoted the evolution of proteins
with both direct and indirect functions. Applied to lizard FG secretions, sexual selection
may have acted indirectly on the semiochemical portion of the signal (namely lipids), by
modifying the matrix (namely proteins) of the blend, and our analysis may therefore have
detected such an indirect effect.

Although speculative, the above rationale provides a testable prediction. We indeed
expect to find a non-random association between the expression in the SSD region of EPG
and some lipophilic compounds occurring in the mixture (which should represent the
semiochemical counterpart); more precisely, those same lipids showing correlation with
mate choice or rival assessment [14,41]. One can argue that such prediction has been already
disregarded by the previous analysis performed on FG lipids [33], which failed to track any
effect of sexual selection. Yet, the analysis on lipids grouped them into a priori chemical
classes. According to our hypothesis, they should be specific semiochemical molecules to
undergo sexual selection, and consequently, the class-level categorization of the lipophilic
fraction may have masked the relation with SSD. Indeed, different lipids, even from the
same chemical category, can follow independent evolutionary trajectories [104]. The same
issue probably did not occur in the analysis of the protein counterpart because it has not
been a priori reduced into categories, and it is probably less complex than the lipophilic
mixture [38,69] (but see [43,45]). At the time of writing, a new study [105] found that the
abundance of provitamin D3 (a lipophilic component) in FG secretions is associated with the
same increase in the relative expression of two FG proteins: carbonic anhydrase and protein
disulfide isomerases, the former corresponding to the one we have identified in the current
study, the latter matching the molecular region predicted by our model (band B; Figure 3).
High proportions of provitamin D3 in FG secretions are associated with a high-quality
immune system in male wall lizards [18] and increases attractiveness towards females [106].
These findings corroborate our predictions and support our hypothesis concerning possible
protein roles.

Finally, we found that sexual dimorphism in size and shape showed no apparent
correlation. This makes the interpretation of the relation between SSD and SHD with sexual
selection more complex. While male-biased sexual size dimorphism is typically linked to
male intrasexual competition [55-57,107], sexual dimorphism in the relative head /trunk
proportion may also possibly reflect other selective forces [55,107], which may eventually
weaken or mask the relationship with sexual selection. Baeckens et al. [33], using a larger
sample of lacertid species, found SSD and SHD to be negatively correlated, suggesting
that a trade-off may occur between the two traits (size and shape). As the same author
suggested, this is a noteworthy point which requires further investigation.

In conclusion, we acknowledge the preliminary and correlative nature of our results
and interpretations, as well as the simplification we made in assuming a one-to-one relation
between protein profiles and protein composition (by corresponding each band to a single
protein). Nonetheless, we are cumulating evidence that proteins constitute more than a
passive matrix for more volatile compounds, and they may be an important component
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of the signal. This indicates that further efforts are required to characterize them both
chemically and functionally.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d15060777/s1, Methods M1: Protocol details for mass spectrometry
analysis; Figure S1: SDS-PAGE of the samples used to excise the bands associated with the SSD
increase and analyzed by mass spectrometry; Table S1: Morphometrics measures used for the
computation of the sexual dimorphism indexes; Table S2: Complete list of the identified peptides
from tandem MS.
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