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Abstract 
Despite numerous works devoted to hybrid origin of parthenogenesis in reptiles, the causes of hybridization between different species, 
resulting in the origin of parthenogenetic forms, remain uncertain. Recent studies demonstrate that sexual species considered parental 
to parthenogenetic rock lizards (Darevskia spp.) avoid interspecific mating in the secondary overlap areas. A specific combination of envi-
ronmental factors during last glaciation period was critical for ectotherms, which led to a change in their distribution and sex ratio. Biased 
population structure (e.g., male bias) and limited available distributional range favored the deviation of reproductive behavior when spe-
cies switched to interspecific mates. To date, at least 7 diploid parthenogenetic species of rock lizards (Darevskia, Lacertidae) originated 
through interspecific hybridization in the past. The cytogenetic specifics of meiosis, in particular the weak checkpoints of prophase I, may 
have allowed the formation of hybrid karyotypes in rock lizards. Hybridization and polyploidization are 2 important evolutionary forces in the 
genus Darevskia. At present, throughout backcrossing between parthenogenetic and parental species, the triploid and tetraploid hybrid 
individuals appear annually, but no triploid species found among Darevskia spp. on current stage of evolution. The speciation by hybridi-
zation with the long-term stage of diploid parthenogenetic species, non-distorted meiosis, together with the high ecological plasticity of 
Caucasian rock lizards provide us with a new model for considering the pathways and persistence of the evolution of parthenogenesis in 
vertebrates.
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Introduction
Caucasian rock lizards (Darevskia spp.) are the unique group 
of reptiles in which natural obligate parthenogenesis was first 
discovered among vertebrates (Darevsky 1958, 1967). Soon 
after, this phenomenon has been found in several different 
reptile families (Lowe and Wright 1966; Hall 1970; Cuellar 
and Kluge 1972; McDowell 1974; Nussbaum 1980; Cole et 
al. 1988; Moritz et al. 1992) and seems to be not as rare as it 
first thought (Kearney et al. 2009). As other parthenogenetic 
species of reptiles, the 7 parthenogenetic Darevskia species 
originated from hybridization between 2 different species of 
the same genus. First experiments to prove hybrid origin of 
unisexual rock lizards were established by I.S. Darevsky and 
F.D. Danielyan, who experimented on skin transplantation 
between different individuals of the same parthenogenetic 
species (Darevsky and Danielyan 1979) and then compared 
allozymes of parthenogenetic and sexual species (Uzzell and 
Darevsky 1974; MacCulloch et al. 1995). The proof became 
firmer with development of genetic studies and compelling 
evidence of the hybrid origin of parthenogenetic species in 

the genus Darevskia came with mitochondrial (Moritz et al 
1992; Fu et al. 1997, 1998; Murphy et al. 2000), and nuclear 
DNA sequence data (Kan et al. 1998; Ryabinina et al. 1999; 
Tokarskaya et al. 2001; Ryskov 2008; Vergun et al. 2014; 
Freitas et al. 2016; Ryskov et al. 2017; Girnyk et al. 2018; 
Vergun et al. 2020; Yanchukov et al. 2022). These studies 
revealed that parthenogenetic species arose from interspe-
cific crossing between “paternal” species D. valentini and D. 
portschinskii from the “rudis” phylogenetic clade, and the 
“maternal” species D. raddei, and D. mixta from the “cauca-
sica” clade (Murphy et al. 1996) or “raddei” clade (Arribas 
1999; Figure 1). Recently, in situ comparative genomic hybrid-
ization allowed visualizing two sets of parental chromosomes 
in the somatic nuclei of parthenogenetic lizards (Spangenberg 
et al. 2020a, 2020b, 2021).

Despite the numerous pieces evidence indicating that most 
parthenogenetic vertebrates originated initially as hybrids, 
produced between closely related sexual species (Cuellar 
1974), the causes that lead to the interspecies hybridization 
and overcoming the prezygotic (premating) reproductive 
barriers between males from one species and females from 
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another remain uncertain. This is rather surprising for genus 
Darevskia spp., given the significant diversification of paren-
tal forms (Fu et al. 2000; Murtskhvaladze et al. 2020) and 
how genetic, morphological, and behavioral adaptations have 
advanced (Gabelaia et al. 2017; Tarkhnishvili et al. 2020).

Recent genetic and cytogenetic studies together with eco-
logical niche modeling based on data of distribution of par-
thenogenetic and sexual rock lizards in combination with 
traditional ecological and ethological research provided new 
information to discuss the pathways of origin and evolution 
of parthenogenetic reptiles. Modern distribution and the evo-
lutionary success of parthenogenetic species are different from 
each other. Some species, such as D. armeniaca, D. dahli, and 
D. unisexualis, have a wide distribution and abundant popu-
lations (Petrosyan et al. 2019, 2020a, 2020b). D. rostombe-
kowi and D. bendimahiensis occupy restricted areas with 
low population density, while D. sapphirina is known in only 
one locality (Cuellar and Smart 1979; Schmidtler et al. 1994; 
Meiri et al. 2017). The challenges in studying of partheno-
genetic lizards are mechanism of co-existence of these forms 
with sexual relative species. The parthenogenetic species in 
many places coexist with sexual relative species (Petrosyan 
et al. 2020a), where the hybridization events are ongoing, 
and annually, presumably sterile triploids and even tetraploid 
hybrids appear in mixed population of Darevskia spp. (Figure 
1; Darevsky and Kulikova 1964; Darevsky 1966; Darrevsky 
and Danielyan 1968; Darevsky et al. 1973). Some authors 
consider parthenogenesis in rock lizards an intermediate 
stage of reticulate evolution directed towards the formation 
of new species with a higher level of ploidy (Figure 2; Borkin 
and Darevsky 1980; Darevsky 1992, 1995; Danielyan et al. 
2008). According to scheme of hybrid speciation in Darevskia 
(Figures 1 and 2), diploid parthenogenetic species continue 
to evolve like a net (Figure 1), which displays a number of 
reticulate evolutionary events with increasing levels of ploidy. 
Indeed, tetraploid individuals of rock lizards have already 

been recorded in nature (Danielyan et al. 2008), but the pro-
cess of the emergence of a new tetraploid species is proceed-
ing. The unique model of Caucasian rock lizards can serve as 
evidence of reticulate evolution where only diploid forms are 
persists as species. Therefore, a number of questions arise: 1) 
what are the main causes of interspecific hybridization and 
switching to parthenogenetic reproduction in the evolution of 
reptiles and can it happen now, 2) how does polyploidization 
occur in parthenogenetic species of genus Darevskia, and 3) 
why, unlike other unisexual reptiles, only diploid parthenoge-
netic species survive through ages?

Causes of Interspecies Hybridization of 
Caucasian Rock Lizards
Transition from sexual reproduction to parthenogenesis 
in reptiles is frequently associated with a major change 
in geographical distribution due to glaciation, flooding, 
natural burning, beach dwelling, and islands (Cuellar 
1977; Kearney 2005). Most studies suggest that partheno-
genetic rock lizards of genus Darevskia appeared in the 
environment severely affected by the glacial cycles of the 
Late Pleistocene (140–22 thousand years ago) (Moritz 
et al. 1992; Darevsky 1966, 1995; Kupriyanova 2010; 
Freitas et al. 2016; Girnyk et al. 2018), associated with 
the major changes in the geographical distribution of the 
sexual species. However, recent study of sex chromosome 
revealed even earlier time of their origin: from 0.5 to 1 
Mya (Yanchukov et al. 2022). As a result of the overlap 
of the distribution areas of the sexual species of Darevskia 
and unstable suboptimal environmental conditions for liz-
ards, the interspecific hybridization between the species 
was probably triggered. Sexual species of rock lizards in 
a certain range of genetic distances, which, according to 
the “balance hypothesis”, are acceptable for interspecific 
hybridization (Moritz 1989; Fu et al. 2000; Tarkhnishvili 

Figure 1. The web of hybridization events among lizards in the genus Darevskia. The filled cycles represent species, the empty cycles—individuals, 
the numbers within the cycles are the level of ploidy of lizards, and the arrows show the parents of interspecies hybridization. Females of the sexual 
species (marked by black bold font) of the Darevskia clade “caucasica” (red cycles) and males of the sexual species of the clade “rudis” (blue cycles) 
participated in hybridization and gave rise to seven parthenogenetic species (yellow cycles, red font of species names) in past. The triploid hybrids 
(white cycles circled in red) arise annually from backcrossing between parthenogenetic and sexual species, and tetraploid individuals (male only) arise 
from backcrossing between triploid hybrids and sexual species (white cycle circled in green). For color, please refer to the online images.
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et al. 2013; Freitas et al. 2019), occurred in the same terri-
tory and could potentially interbreed with each other.

The existing populations of sexual species of Darevskia seem 
to demonstrate a pre-mating reproductive isolation in sym-
patric zones of 2 species. Several secondary overlap areas of 
parental sexual species are present in the Caucasus (Darevsky 
1967; Darevsky and Danielyan 1979; Tarkhnishvili et al. 
2010; Petrosyan et al. 2019, 2020a). Recent studies of sym-
patric populations of D. portschinskii and D. raddei, which 
are parental for parthenogen D. rostombekowi (Murphy et al. 
2000; Freitas et al. 2016) in the Karvachar area (Petrosyan et 
al. 2020a) showed that both species exploit the same habitats 
and overlap in periods of gameto- and oogenesis. They are also 
similar in their daily and seasonal activities and occupy close 
ecological niches (Galoyan et al. 2019). Cytogenetic studies 
revealed that the mechanisms of post-zygotic isolation are not 
strict among them and both species possess similar sets of 
chromosomes with the same morphology (Spangenberg et al. 
2017). However, a microsatellite study of individuals within 
this population revealed an absence of hybrids (Galoyan et 
al. 2020). Behavioral observations proved presence of repro-
ductive pre-mating isolation between D. r. raddei and D. 
portschinskii: individuals of both species do not mate with 
heterospecifics and distinguish between conspecifics and het-
erospecifics of both sexes (Galoyan et al. 2019).

However, it is obvious that since the parthenogenetic lin-
ages are of hybrid origin, the sexual species successfully over-
came the reproductive barrier in the past. Here we assume 
that harsh climate and reducing the suitable habitats for rock 

lizards collapsed reproductive barrier in glacial period but it 
restored again after stabilization of environment conditions. 
Behavioral adjustment is the common response in animal 
adaptation to environmental change (Wong et al. 2015). Due 
to an imbalance of sex ratio in population of lizards under 
suboptimal conditions, which is often male-biased (Veen et al. 
2001; Donald 2007; Kurek et al. 2019), interspecific mating 
among sexual species of Darevskia became frequent, which 
provided opportunities for the origin of parthenogenetic liz-
ards. A growing number of examples in the literature have 
documented cases where environment changes (e.g., human 
activities, climate change) have altered long-established spe-
cies interactions, including hybridization (Grabenstein and 
Taylor 2018). The importance of the environment as a factor 
affecting hybridization probability is the best demonstrated 
by the wall lizards Podarcis, where different species of this 
genus hybridize in the cities after multiple introductions of 
non-native lineages (Beninde et al. 2018).

Thus, the hybridization between the sexual species of 
Darevskia is not observed nowadays because of the pre-mat-
ing reproductive barrier, but it likely happened due to behav-
ioral changes in response to increased environmental stress 
factors in period of the glacial cycles of the Late Pleistocene, 
which caused the appearance of parthenogenetic individuals 
in the newly created hybrid zones. The lack of evidence for 
the de novo appearance of parthenogenetic species after a 
period of glaciation may also indicate the role of stress fac-
tors during the glacial cycles for overcoming the prezygotic 
(or premating) reproductive barrier for interspecific hybrid-
ization (Figure 1).

Cytogenetic Mechanism of Parthenogenesis
Understanding the cytogenetic mechanism through which 
parthenogenesis can evolve after hybridization events between 
sexual species remains a key issue for explanation of specia-
tion by hybridization in vertebrates. In general, parthenoge-
netic reproduction may allow lizards to overcome the barrier 
of hybrid sterility of interspecific offspring derived from 
divergent parent species. (Figure 2). Notably, the cytogenetic 
specifics of meiosis of Darevskia spp., in particular the weak 
checkpoints of prophase I, may have allowed the formation of 
hybrid karyotypes in rock lizards (Spangenberg et al. 2017). 
Therefore, after the primary act of interspecific hybridization 
between different sexual species of rock lizards, the germ cells 
of the hybrid individuals were able to overcome the prob-
lems of chromosomal synapsis in meiosis (Spangenberg et al. 
2020a). In the following generations, the processes associated 
with overcoming the so-called genomic shock may have fol-
lowed, which “forced the genome to restructure itself in order 
to overcome a threat to its survival” (McClintock 1984).

Gametes of vertebrates are produced by several different 
cytogenetic mechanisms (Dedukh et al. 2020). A common way 
of restoration of set of chromosomes in parthenogenetic rep-
tiles (Aspidoscelis) includes premeiotic DNA endoreplication 
during the proliferation of germ cells, which allows synapsis 
of identical chromosome copies (pseudobivalents) in meiosis 
I and leads to the production of unreduced gametes (Lutes et 
al. 2010; Newton et al. 2016; Dedukh et al. 2020). Detailed 
study of meiosis in the parthenogenetic Darevskia species sug-
gests diploidy restoration through automixis, which proceeds 
according to the “central fusion” mechanism (Darevsky et al. 
1973; Spangenberg et al. 2020a). Parthenogenetic species of 
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Figure 2. Consequences of stepwise hybridization with increasing the 
ploidy level of lizards in process of reticulate evolution in the genus 
Darevskia. The grey areas correspond to known hybrid zones between 
species, the arrows show on the result of interspecies hybridization and 
punctuate arrows show on the possible result of hybridization during 3 
stages of reticulate evolution in rock lizards. In “rudis” phylogenetic clade 
of lizards are D. valentini and D. portschinskii “paternal” sexual species, 
in “caucasica” clade of lizards—D. raddei and D. mixta “maternal” 
sexual species, parthenogenetic species are D. armeniaca, D. dahi, D. 
unisexualis, D. rostombekowi, D. uzzelli, D. bendimahiensis, and D. 
sapphirina.
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Darevskia lizards undergo meiosis, which includes synapsis 
of homeologous chromosomes (inherited from different spe-
cies) in the normal ploidy oocytes I (Spangenberg et al. 2020a, 
2021). This conclusion arose from the detection of the numer-
ous nuclei with non-distorted late (pachytene and diplotene) 
stages of meiotic prophase I in parthenogenetic Darevskia. As 
well as from the study of meiosis in 2n = 37 D. unisexualis 
population, where formation of the autosomal trivalent reli-
ably confirmed true synapsis of homeologues but not forma-
tion of “pseudobivalents” (Spangenberg et al. 2021). On the 
other hand, the possibility of detection premeiotic endorepli-
cation as the most obvious way to freeze recombination can-
not be ruled out in the future (Newton et al. 2016).

Ecological Plasticity of Parthenogenetic Rock 
Lizards
Parthenogenetic reproduction of vertebrates is theoretically 
associated with 2-fold demographic advantage of producing 
all-female offspring (Maynard-Smith 1978; Otto 2009) and 
high acquired heterozygosity in the hybrid genome, which 
fit well into different ecological niches. Lowe and Wright 
(1966) suggested the “weed hypothesis” to explain why 
rapid distribution of parthenogenetic lizards of Aspidoscelis 
genus occurred during the Pleistocene climate fluctuations. 
According to them, parthenogenetic species occupy unsta-
ble areas due to double reproduction ability and they often 
inhabit the historically unstable areas (Wright and Lowe, 
1968). In a similar way, several parthenogenetic lineages 
of gecko species, Lepidodactylus lugubris widely distribute 
through the Pacific islands but the parental sexual species 
occurred only in a limited range (Ineich 1999; Karin et al. 
2021). The geographical parthenogenesis hypothesis suggests 
that parthenogenetic forms have broader distribution areas 
than their sexual relatives, especially in previously glaciated 
areas, since they occupy the ‘marginal’ suboptimal habitats 
(Kearney 2005; Vrijenhoek and Parker 2009).

Indeed, some parthenogenetic species of Darevskia genus 
have an apparent success under natural conditions, attain 
high population densities, wide distribution, and even exclude 
their sexual relative species (Arakelyan et al. 2011, 2019; 
Freitas et al. 2016; Tarkhnishvili et al. 2017). Among 7 par-
thenogenetic species of Darevskia, several (D. saphpirina, D. 
bendimahiensis, D. uzzelli, and D. rostombekowi) occupy 
restricted areas (Cuellar and Smart 1979; Schmidtler et al. 
1994; Meiri et al. 2017), while D. unisexualis, D. dahli, and 
D. armeniaca have a relatively wide distribution (Arakelyan 
et al. 2011; Petrosyan et al. 2020a).

In order to understand the consequences of parthenogenetic 
reproduction of Darevskia species, it is required to define the 
niche differences between parthenogenetic and sexual species 
in accordance with frozen niche variation (FNV) model. This 
model suggests that sexual species are not able to co-exist with 
a large number of parthenogenetic lineages that can suppress 
them. According to Darevsky (1966) the parthenogenetic 
populations of rock lizards survived extreme environmental 
conditions, whereas the sexual populations either died out or 
were pushed to the south under the influence of glacier (Cuellar 
1977). Modeling ecological niches for parthenogenetic D. 
dahli and its parental species D. mixta and D. portschinskii 
demonstrated the differentiation between lizard ecological 
niches and species-specific requirements for environmen-
tal variables and support the geographical parthenogenesis 

hypothesis in a group of rock lizards (Petrosyan et al. 2019). 
The indicators of the overlap of ecological niche indices are 
low between parthenogenetic D. dahli and maternal D. mixta, 
but are high between D. dahli and paternal D. portschinskii. 
Thus, the ecological niches breadth of parthenogenetic forms 
D. dahli is significantly larger than this in “maternal” spe-
cies D. mixta (Petrosyan et al. 2020b). Therefore, in case of 
Darevskia species, the FNV model is supported by the fact 
that range modeling of D. armeniaca and D. dahli has shown 
that they continue to spread and even suppress the parental 
species (Petrosyan et al. 2019, 2020b). Parthenogenetic rock 
lizards usually have intermediate requirements for habitat 
variables relative to those of their parental species, but some 
variables strongly differ from their parental species (Petrosyan 
et al. 2019, 2020b). Moreover, the competition between the 
maternal sexual species D. mixta with daughter parthenoge-
netic D. dahli and D. armeniaca caused a shift in the range 
boundary of D. mixta to the west of its native range due to 
displacement by both parthenogenetic forms (Tarkhnishvili 
et al. 2010; Petrosyan et al. 2020a). The wide distribution of 
parthenogenetic D. armeniaca may also be explained by its 
complex origin, since it has been previously suggested that 
this parthenogenetic species appeared after two hybridization 
events (Tarkhnishvili et al. 2010).

The next popular mechanisms of co-existence of sexual 
and parthenogenetic forms is described in the frameworks of 
the “General Purpose Genotype” hypothesis (GPG), which 
assumes the existence of a multiclonality of parthenoge-
netic forms because natural selection can act more efficiently 
towards polyphyletic clones (Vrijenhoek & Parker, 2009). 
The study of genetic variability of Darevskia parthenogenetic 
species evidences that the ecological adaptations of species 
correlated with high clonal diversity and GPG model showed 
a reliable prediction in case of Darevskia species. There are 
at least 11 lineages (microsatellite genotypes) known for D. 
dahli (Vergun et al. 2014), five for D. rostombekowi (Ryskov 
et al. 2017), 13 for D. armeniaca (Girnyk et al. 2018), and 
12 for D. unisexualis (Vergun et al. 2020). A comparative 
study of microsatellite mutations at highly unstable loci of 
parthenogenetic lizards and their offspring revealed de novo 
mutations that significantly contributed to the population var-
iability of parthenogenetic species (Badaeva et al. 2008). The 
ecological and genetic plasticity of parthenogenetic D. arme-
niaca and D. dahli has been proved experimentally. In 1963, 
I.S. Darevsky and N.N. Shcherbak initiated an experiment on 
the introduction of D. armeniaca from Armenia to Ukraine. 
More than half a century later, successfully introduced lizards 
have increased their range, population density and genetic 
diversity (Darevsky and Shcherbak 1967; Nekrasova and 
Kostiushyn 2016; Omelchenko et al. 2016). Similar to sex-
ual reproduction, which increases genetic and phenotypic 
variability through recombination, parthenogenetic forms 
have their own evolutionary pathways that remain to be 
explored, at least in terms of a large range of geographical 
distribution (Arakelyan et al. 2011; Petrosyan et al. 2020a) 
and low rate of infestation by blood parasites of parthenoge-
netic lizards in mixed populations of rock lizards, (Arakelyan 
et al. 2019). In accordance with the parasitological version 
of the ‘Red Queen’ hypothesis (Moritz et al. 1991), obligate 
parthenogens have become less responsive in the arms race 
between hosts and parasites due to their low genetic variabil-
ity (Moritz et al. 1991; Darevsky 1995). Moreover, parthe-
nogenetic Darevskia lizards were not overloaded with blood 
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parasites and helminths when compared to their sexual rela-
tives in areas where they share the same habitat (Arakelyan et 
al. 2019), supporting their adaptive success to parasite infec-
tion and deviates from the predictions of the ‘Red Queen’ 
dynamics for rock lizards. Thus, different hypotheses on the 
persistence of parthenogenetic reproduction in the group of 
rock lizards suggest that, in accordance with the genetic com-
bination of parental species in parthenogenetic lineages, some 
of them have promising prospects in withstand long-term 
competition with their sexual relatives.

Further Step of Reticulate Evolution in Rock 
Lizards
Polyploidy is considered to be an important driving force in 
evolution as it increases the genetic material on which muta-
tion and selection can act in fishes, amphibians and reptiles 
(Pandian 1998; Stenberg and Saura 2013). Unlike most par-
thenogenetic reptiles (Aspidoscelis spp., Heteronotoa binoei, 
and Indotyphlops braminus), where triploidy is common 
(Penncock 1965; Simon 1996; Grismer et al. 2014; Wynn et 
al. 1987; Lutes et al. 2010), a unique feature of all Darevskia 
parthenogenetic lizards are diploid (Kupriyanova 2010; 
Spangenberg et al. 2020a, 2021). According to recent studies 
in genus Aspidoscelis, diploid unisexual animals of this genus 
are considered mostly as a temporary stage before the forma-
tion of parthenogenetic triploid forms (Barley et al. 2021). 
Thus, the question of selective advantages of seven diploid 
unisexual lineages of rock lizards and the absence of the pop-
ulations of unisexual tripoid forms is of great interest.

In theory, in syntopic populations of Darevskia lizards, a 
new sexual species with a higher level of ploidy may arise 
as the next stage of reticulate evolution (Figure 1) due to 
low pre- and post-zygotic barriers between parthenogenetic 
and sexual species. Most biological features of parthenoge-
netic and sexual species of rock lizards are similar (Galoyan 
2010; Tarkhnishvili et al. 2010). Females of the lizards of 
both reproduction modes have a similar home range size and 
structure, although home ranges in parthenogens overlap 
among many individuals (Galoyan 2013). Significant over-
lap in seasonal and daily activities, as well as periods of their 
reproduction, has been described (Abrahamyan et al. 2014). 
Comparisons of longevity, growth rate, reproductive age, and 
number of eggs in a clutch in parthenogenetic and sexual liz-
ards have shown that these parameters depend more on the 
size of the lizards than on the reproduction mode (Arakelyan 
2002; Arakelyan et al. 2013). Moreover, it has been experi-
mentally recorded that parthenogenetic rock lizards are more 
resistant to deficits of humidity at the first stages of embry-
onic development (Danielyan 1971), which increases their 
survival in harsh environmental conditions. Similarly, embry-
onal viability in parthenogenetic forms was higher in the par-
thenogenetic gecko Heteronotia binoei with less sensitivity to 
incubation temperature (Kearney and Shine 2004) than their 
sexual relatives.

Contrary to opinion that parthenogenetic forms suggesting 
competitive exclusion of their sexual relatives (Cuellar 1977), 
the mixed populations of rock lizards where co-existing the 
lizards with two mode of reproduction are quite common 
(Petrosyan et al. 2020b). They often coexist as one metapop-
ulation in the areas of the secondary overlap areas (Darevsky 
1966; Wright and Lowe 1968; Cuellar and Smart 1979) 
and breed with the parental species (Figure 1; Darevsky and 

Kulikova 1964’ Darevsky et al. 1973; Darevsky and Danielyan 
1979; Paulissen et al. 1992; Spangenberg et al. 2017). Recent 
studies suggested that mate choice in sexual females might be 
affected by UV-blue spots on the females` body; however, there 
were no significant differences in the number of these spots 
between parthenogenetic females and females of parental spe-
cies (Abramjan et al. 2020). Visual observations of interspe-
cific mating between parthenogenetic D. unisexualis and D. 
armeniaca and males of paternal D. valentini (Galoyan 2013) 
and abundant mating marks on the bodies of parthenogenetic 
females (Carretero et al. 2018) support the idea of partheno-
genetic female attractiveness for males of sexual species. As 
a result of interspecies backcrossing, the triploid male and 
females with different levels of fertilities as well the tetraploid 
male with fully developed reproductive system were recorded 
in mixed population of 2 parthengenetic (D. unisexualis and 
D. armeniaca) and sexual D. valentini species (Danielyan et 
al. 2008). However, tetraploid species (not individuals) with 
sexual reproduction are not documented in reptiles, however, 
are known among fish and amphibians (Stenberg and Saura 
2013; Yang et al. 2022). On current stage of evolution, the 
interspecific hybridization between diploid parthenogenetic 
rock lizards and males of parental species in sympatry gives 
rise to triploid and tetraploid hybrid individuals (Danielyan 
et al. 2008; Freitas et al. 2019), which is a main prediction of 
continuous reticulate evolution with potential formation of 
new sexual species on a higher level of ploidy (Figures 1 and 
2). Usually, triploid females and intersexes of rock lizards are 
considered sterile individuals with deep disturbances in their 
reproductive systems (Danielyan et al. 2008). Nevertheless, 
the cytogenetic studies evidence that triploid males can pro-
duce abnormal and aneuploid spermatozoa due to an absence 
of strict checkpoints in meiosis I (Spangenberg et al. 2017). 
The possible role of polyploid hybrid males and females of 
Darevskia in the scheme of reticulate evolution is a subject of 
future studies.

Conclusion
Environmental extremes can act as evolutionary forces for the 
ectothermic animals to overcome prezygotic barriers in areas 
of secondary overlap between related species, thus facilitating 
interspecies matings and switching to parthenogenetic breed-
ing mode in the case of reptiles. Accordingly, the hybridiza-
tion between closely related Darevskia spp. in the past was 
possible due to the action of environmental stress factors 
during the last glaciation period, which shifted habitats of 
the lizards to refugia and decreased the population density of 
species. The low number of individuals and sex ratio imbal-
ance in suboptimal conditions influenced the behavior of liz-
ards and may stimulated mating between different species. A 
high population density, low intraspecific competition, and a 
high level of acquired heterozygosity allowed parthenogenetic 
hybrids to colonize marginal habitats to survive under harsh 
environmental conditions. Currently, seven diploid hybrid 
parthenogenetic species of the genus Darevskia have favora-
ble long-term, albeit different, prospects of survival. Some 
Darevskia parthenogenetic species have a wide distribution 
and even displace the related sexual species. The prosperity 
of parthenogenetic rock lizards of the genus Darevskia is 
likely due to meiotic plasticity, successfully passing through 
key stages of the first division of meiosis and automixis via 
a “central fusion” mechanism. Backcrossing with the sexual 
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species in hybrid zones is also considered a possible way to 
maintain the stability of parthenogenetic forms. Nevertheless, 
triploid and tetraploid hybrids appear regularly in the sym-
patric zones of parthenogenetic and parental species, due 
to both low pre- and post-mating barriers between parthe-
nogenetic and sexual species. However, at present, we have 
recorded the block of premating barriers between two sexual 
syntopic species. Also of great interest is the fact that, unlike 
other parthenogenetic lizards, including triploid clones, the 
genus Darevskia includes only diploid parthenogenetic liz-
ards. The impact of climate change on the fitness of partheno-
genetic species and the study of exact genetic and cytogenetic 
mechanisms behind in context of the evolution of these spe-
cies should be the subject of future research, especially in view 
of the role of parthenogenetic reproduction under changing 
environmental conditions.
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