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The ocellated lizard (Timon lepidus) exhibits an intricate skin color pattern made of monochromatic
black and green skin scales, whose dynamics of color flipping are known to be well modeled by a stochastic
cellular automaton. We show that the late-time probability distribution of the pattern corresponds to the
canonical probability distribution of the antiferromagnetic Ising model and can be generated by dynamics
different from the commonly-used Glauber. We comment on skin scale patterns generated by the Ising
model on the triangular lattice in the low-temperature limit.
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Introduction.—Skin color patterns are highly similar
among individuals within a species; i.e., zebras have
stripes, but cheetahs have spots. However, the positional
details of the pattern change from one individual to the
other. Whereas, in many species, individuals exhibit the
same pattern all their life, in others they drastically shift
between distinct juvenile and adult patterns. A third
category involves the progressive transformation of the
juvenile pattern into the adult pattern. The ocellated lizard
(Timon lepidus) is such a case: The adult dorsal labyrin-
thine pattern, made of black and green chains of scales
[Fig. 1(a)], is generated through a gradual process of green-
to-black and black-to-green color switching of individual
scales. The switching of a single scale typically takes a few
weeks and can happen even 3–4 years after the beginning
of the process. The resulting pattern is likely to have a
classical camouflaging function based on body outline
disruption [2–4].
While skin colour patterning is classically described by

Turing’s reaction-diffusion (RD) equations [5], at the scale
of the ocellated lizard’s skin scales these dynamics are
effectively described by a two-state stochastic cellular
automaton (sCA) [6] with spatial discretization provided
by the mesoscopic skin scales and with time steps repre-
senting increasing time intervals as the lizard grows. Note
that spatial and color-state discretizations both emerge from
the superposition of the RD system with the lizard’s skin

geometry [6,7]: Diffusion is reduced at the thin borders of
much thicker skin scales such that it homogenizes color
within a scale, while color-state transitions occur at sharp
scale borders. The flipping probabilities of the sCA
[Fig. 1(b)] were inferred in Ref. [6] by monitoring the
skin patterns of individuals over a period of several years.
Computer simulations of the sCA yield patterns very
similar to those of real lizards [6] [Fig. 1(c)] within the
corresponding number of time steps (∼10–15). The lizard
sCA is an example of an ergodic Markov chain on the space
of possible patterns, admitting a stationary probability
distribution characterizing the late-time patterns.
The celebrated Ising model [8,9], whose states can be

generated dynamically, can be viewed as a simple self-
organized pattern production mechanism. It was discovered
to describe a wide range of processes in physics (idealized
but also real magnetic materials and gases [8,10,11]),
chemistry (reaction-diffusion systems [12]), biology (for
modeling population dynamics [13], neural circuits [14],
glioma invasion [15–17], protein folding [18], gene regu-
lation [19], and DNA compaction [20]), and even economic
and social sciences (e.g., Ref. [21]). Here, we evaluate the
efficiency of the Ising model to describe the skin color
patterning of the ocellated lizard. This description inevi-
tably focuses on how measurable interactions among
mesoscopic skin scales explain the emergence of the
macroscopic skin color patterns while ignoring the
“lower-level” processes. Although our study does not
provide insight in terms of cell biology, it suggests that
natural selection can efficiently act upon self-organizational
processes even when they maximize the Gibbs entropy.
The Ising model in thermal equilibrium is characterized

by a stationary probability distribution given by the
canonical ensemble (or Gibbs measure). Its time evolution

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 128, 048102 (2022)
Editors' Suggestion Featured in Physics

0031-9007=22=128(4)=048102(6) 048102-1 Published by the American Physical Society

https://orcid.org/0000-0001-9358-572X
https://orcid.org/0000-0002-2553-0724
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.048102&domain=pdf&date_stamp=2022-01-27
https://doi.org/10.1103/PhysRevLett.128.048102
https://doi.org/10.1103/PhysRevLett.128.048102
https://doi.org/10.1103/PhysRevLett.128.048102
https://doi.org/10.1103/PhysRevLett.128.048102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


is often expressed as a Monte Carlo Markov chain
(MCMC), which also acts as a sampler of the canonical
ensemble. Its transition probabilities are usually given by
the “heat-bath algorithm,” which adapts Glauber dynamics
[22] to the discrete-time setup. The questions we study here
are (1) Can we fix the Ising model parameters so that the
canonical probability distribution is equal, or very close, to
the stationary probability distribution of the lizard sCA
Markov chain? (2) Is there an MCMC for the Ising model
whose dynamics reproduce well that of the lizard sCA?
Concerning question 1, we find that the Ising model for the
lizard sCA is an antiferromagnet at finite temperature, with
an external magnetic field accounting for the asymmetry of
black and green scale frequencies. The Ising model
description of color patterning is remarkable in two
respects. First, the two-state degree of freedom (green or
black) at a mesoscopic scale is enough for an effective
description of the underlying continuous microscopic
mechanisms. Second, the Ising model is in the antiferro-
magnetic phase on a triangular lattice, which is essentially a
frustrated system, illustrating the idea that self-organized
complexity arises from frustration [23,24]. Concerning
question 2, we find that the dynamics reproducing the
lizard sCA are different from Glauber dynamics. Let us
note that an arbitrary set of sCA flipping probabilities is not
necessarily associated to an Ising model, making our results
nontrivial.
We also comment on the Ising model in the low-

temperature limit and its potential as a pattern-generation
mechanism for an idealized lizard.
The stochastic cellular automaton as a Markov chain.—

The hexagonal scales on the back of the lizard are modeled
by vertices of a finite triangular lattice of N ¼ a few
thousand sites; i.e., the lattice defects (10%–15% of scales)
are neglected. In simulations, periodic boundary conditions
are imposed so that interactions with the flanks, head, and
tail are ignored. Each scale k is in a state σk which can take

two values: þ1 for green and −1 for black. A pattern σ ¼
ðσ1;…; σNÞ is one of the 2N possible configurations of
scale states. Probability distributions on the set of patterns
will be denoted by π. Its time evolution is approximated by
a discrete-time Markov chain with transition probability
matrix Pðσjσ0Þ giving the probability of transition from σ0
to σ in a single step:

πðtþ1ÞðσÞ ¼
X

σ0
Pðσjσ0ÞπðtÞðσ0Þ: ð1Þ

In the case of the lizard sCA, Pðσjσ0Þ can be computed from
the flipping probabilities pg;bðng;bÞ in Fig. 1(b). In practice,
it is a very large matrix of size 2N × 2N (≈101806 for N ¼
3000 scales). We assume that this Markov chain is ergodic,
which could, in principle, be shown by studying the
nonzero entries of P. In that case, the stationary probability
distribution πlizard satisfying

πlizardðσÞ ¼
X

σ0
Pðσjσ0Þπlizardðσ0Þ ð2Þ

is attractive and gives the late-time probability distribution
of the patterns of T. lepidus. We further assume (and
confirm below) that the mixing time of this Markov chain is
not much larger than a few tens of time steps, i.e., the life
span of the lizard.
The Ising model.—The probability distribution for the

canonical ensemble of the Ising model is given by

πIsingðσÞ ¼
1

Z
exp

�
βJ

X

hk;k0i
σkσk0 þ βB

X

k

σk

�
; ð3Þ

where J is the link energy, B is the site energy, and β is the
reciprocal temperature. The first sum is over all pairs of
nearest neighbors. The factor Z is the partition function
normalizing the probabilities, known only as a closed
formula in some special cases, e.g., for B ¼ 0 [25–27].

FIG. 1. (a) Dorsal pattern of an adult T. lepidus and time evolution for a detailed region. (b) Probabilities pg;bðng;bÞ of scale color
flipping as a function of the number of green ðngÞ or black ðnbÞ nearest neighbors (Supplemental Table 1.1 [1]). Uncertainty bars
indicate standard deviation for a sample of ten time points in three individuals. (c) Relative frequencies of green scales (dashed green
lines) and black scales (dashed black lines) as a function of the neighborhood: comparison of observed data from three adult lizards
against CA simulations using pgðngÞ and pbðnbÞ from (b) (dotted black line, steady-state regime).

PHYSICAL REVIEW LETTERS 128, 048102 (2022)

048102-2



Monte Carlo Markov chains for the Ising model.—To
find parameters βJ and βB for which the probability
distributions πlizard and πIsing are very close, we use the
Metropolis-Hastings algorithm [28,29], which is an MCMC
admitting πIsing as its attractive stationary steady-state distri-
bution. Its transition matrix is

PMCMCðσjσ0Þ ¼ gðσjσ0ÞAðσ; σ0Þ; σ ≠ σ0; ð4Þ

where gðσjσ0Þ is the probability to select σ as the next state
when the current state is σ0 and Aðσ; σ0Þ is the probability
to accept it. The diagonal elements are defined usingP

σ PMCMCðσjσ0Þ ¼ 1.
Using (i) the assumption of detailed balance, (ii) a

“single-flip” scheme for the state selection process
gðσjσ0Þ, and (iii) a special ansatz for the dependence of
the state acceptance probability Aðσ; σ0Þ, it can be shown
(Supplemental Material [1]) that the following flipping
probabilities

pMCMC
g ðngÞ ¼ Aðe−2βJð2ng−6Þ−2βBÞ;

pMCMC
b ðnbÞ ¼ Aðe−2βJð2nb−6Þþ2βBÞ ð5Þ

for a certain function AðRÞ define a single-flip MCMC
whose stationary probabilistic distribution is precisely
πIsing. A sufficient condition on AðRÞ is that it satisfies
AðR>0Þ ⊂ ð0; 1� and the functional relation

Að1=RÞ ¼ AðRÞ=R: ð6Þ

The lizard Ising model.—First, we determine the best
Ising parameters describing the lizard sCA independently
fromA. Equations (5) and (6) imply the following relation:

log
pMCMC
g ðnÞ

pMCMC
b ð6 − nÞ ¼ ð−4βJÞnþ ð12βJ − 2βBÞ: ð7Þ

This is an affine function of n. The corresponding quantity
logpgðnÞ=pbð6 − nÞ for the lizard flipping probabilities is
plotted in Fig. 2(a), together with the best least-squares fit
for anþ b. From the fitted coefficients a and b, values
for the Ising model parameters βJ ¼ −a=4 and βB ¼
−ð3aþ bÞ=2 can be extracted:

βJ ¼ −0.457� 0.016; βB ¼ −0.51� 0.14: ð8Þ

This is an antiferromagnetic Ising model (J < 0) at finite
temperature with asymmetry favoring black scales (B < 0).
The affine fit being close to the lizard data, the Ising model
probability distribution πIsing with these parameters should
approximate well the lizard sCA stationary probability
distribution πlizard. A direct comparison for small lattices
(Supplemental Fig. 3.1 [1]) and numerical simulations for
larger lattices [Figs. 2(b) and 2(c)] show that the Ising

model generates nearest-neighbor statistics and typical
patterns similar to those obtained with the sCA at late
times.
Second, we determine the function A for which the

flipping probabilities (5) are closest to those of the lizard
sCA reproduced in Fig. 1(b). The only 14 values of R
where AðRÞ matters are

R ¼ Rn ≔ exp ½−2βJð2n − 6Þ − 2βB� ð9Þ

and R ¼ 1=Rn for n ¼ 0;…; 6. Since from Eq. (6) we have
Að1=RnÞ ¼ AðRnÞ=Rn, we have seven degrees of freedom
to fix, namely, An ≔ AðRnÞ. These can be fixed by mini-
mizing the sum of squared differences

X

c¼g;b

X6

n¼0

½pcðnÞ − pMCMC
c ðnÞ�2: ð10Þ

Using Eq. (5), we find

FIG. 2. (a) Values of logpgðnÞ=pbð6 − nÞ from the data in
Fig. 1(b) with best affine fit (red dotted line and shading for
uncertainty). Values at n ¼ 0 and 6 cannot be reliably inferred
from the available data. (b) Nearest-neighbor statistics: relative
frequencies of green and black scales as a function of the
neighborhood [data from 100 runs of 5000 time steps for both
sCA and single-flip MCMC fitted Ising model with AðRÞ ¼
R=ðRþ 1Þ; initial condition in Supplemental Fig. 2.2 [1] ].
(c) Typical patterns obtained in (b).

PHYSICAL REVIEW LETTERS 128, 048102 (2022)

048102-3



An ¼ ½R2
npgðnÞ þ Rnpbð6 − nÞ�=ðR2

n þ 1Þ; ð11Þ

which are shown in Fig. 3(a). These lead to the following
Ising model flipping probabilities:

pMCMC
g ðngÞ ¼ Ang ; pMCMC

b ðnbÞ ¼
A6−nb
R6−nb

: ð12Þ

The numerical values represented in Fig. 3(a) (and
Supplemental Table 1.2 [1]) are very close to the lizard
sCA flipping probabilities.
The dynamics of the two models also compare well. For

example, the average number of flips as a function of time
are similar (Supplemental Fig. 5.1 [1]) when a single CA
generation is identified to N single flips. We conclude that
the functionA defined by the valuesAn andAn=Rn gives a
very good approximation of the skin color change dynam-
ics in T. lepidus. Dynamical simulations also seem to
indicate a posteriori that both the lizard sCA and the Ising
MCMC with fitted flipping probabilities are indeed ergo-
dic with mixing time of the order of a few tens of CA
time steps.
Next, we compare the dynamics obtained above to

Glauber dynamics traditionally used to describe relaxation
of the Ising model toward thermal equilibrium [22]. For
discrete-time evolution of single flips, the Glauber dynam-
ics can be defined by AðRÞ ¼ AGðRÞ ≔ cR=ðRþ 1Þ for
flipping rate c. The function AGðRÞ obeys an extra func-
tional relation: AGðRÞ þAGð1=RÞ ¼ c. Therefore, fixing

n ¼ ng ¼ 6 − nb, the flipping probabilities built using AG
should satisfy pgðnÞ þ pbð6 − nÞ ¼ c for n ¼ 0; 1;…; 6,
independently of βJ and βB. As shown in Fig. 3(b), this
relation is not satisfied by the lizard sCA flipping prob-
abilities, showing that Glauber dynamics is unsuited for
modeling the scale color dynamics.
Skin patterns and the Ising model in the low-temperature

limit.—The lizard skin scale color flipping process is
stochastic. This randomness could be a consequence of
different factors affecting an otherwise deterministic proc-
ess: geometrical inhomogeneities and defects of the lattice
of sites, longer-range interactions, simultaneous flipping of
nearest neighbors, the two-state approximation, some
unknown microscopic degrees of freedom, etc. Let us here
assume that all these nuisance effects can be neglected in an
idealized lizard. If a corresponding Ising model exists, it
should be in the limit of zero temperature (β → ∞), since
temperature is related to random fluctuations in the
Ising model.
In this regime, πIsing in Eq. (3) is vanishing everywhere

except for ground-state patterns minimizing the energy

E ¼ −J
X

linkshk;k0i
σkσk0 − B

X

sitesk

σk; ð13Þ

over which it is uniform. The phase space of ground-state
patterns of the Ising model on the triangular lattice is well
known [26,30]. It is represented in Fig. 4, with the low-
temperature limit (β → ∞) lying on the outer circle. In that
limit, there are eight regions giving qualitatively different
ground-state patterns (see Supplemental Material [1],
which includes Ref. [31]).

FIG. 3. (a) Function AðRÞ obtained from the fit (red points and
linear interpolation in red lines) and comparison with the lizard
sCA flipping probabilities reported from Fig. 1(b). Dashed line,
Glauber function AGðRÞ with c fixed below. (b) Values of
pgðnÞ þ pbð6 − nÞ from the data in Fig. 1(b) with best constant
fit c (red).

FIG. 4. Parameter space of the triangular Ising model in polar
coordinates with radial coordinate mapped to a finite range. The
zero temperature limit is the outer circle, where we indicate the
eight regions with different types of ground-state patterns. The
system exhibits order in regions (i)–(v) and disorder at points
(vi)–(viii) (see Supplemental Material [1]). The red star indi-
cates the location of the optimized lizard Ising model at finite
temperature.

PHYSICAL REVIEW LETTERS 128, 048102 (2022)

048102-4



The first five [(i)–(v)] are said to be “ordered” phases in
the low-temperature limit, since the number of ground-state
patterns does not scale with the lattice size N. In a
dynamical setup, these ground-state patterns may not be
relevant for patterning, because the relaxation time of the
system may be exponential in the system size. Some
metastable states may even be stationary for single-flip
dynamics, as ergodicity often does not hold for the
corresponding MCMC.
The last three [(vi)–(viii)] are said to be “disordered”

phases in the low-temperature limit, since the number of
ground-state patterns scales exponentially with the lattice
size N [26,32]. These may be the most relevant phases for
patterning: Variability of the pattern is still maintained even
as the source for stochasticity represented by temperature is
lowered. Among these three, the frustrated antiferromag-
netic point (vi) ðB ¼ 0; J < 0Þ [26] arguably gives the most
relevant patterns for T. lepidus (Supplemental Fig. 6.1 [1]).
Conclusions.—Starting from the description of Timon

lepidus pattern dynamics as a sCA, we evaluated the
probability of finding a given pattern in terms of the
Ising model canonical probability distribution. The corre-
sponding Ising model is in the antiferromagnetic phase at
finite temperature. The pattern evolution can be well
approximated by a single-flip Monte Carlo Markov chain
describing the thermalization of the Ising model. We found,
however, that the optimal dynamics are not those of
Glauber. We also discussed the patterns generated in the
zero temperature limit, especially in terms of pattern
variability.
This new angle on the study of animal skin patterning

does not provide much insight on the underlying micro-
scopic cell-biology processes [6,7]. However, it poses
unconventional questions on some possible relationships
between genetic variability, the Darwinian selection proc-
ess, and the entropy maximization principle. Indeed, for a
given local interaction model, the canonical probability
distribution over patterns maximizes the Gibbs entropy
−
P

σ πðσÞ log πðσÞ under the constraint that the mean
“energy” of the pattern is fixed. In this way, the energy
of a pattern becomes a well-defined notion for the relevant
local interaction model. We have shown here that this
concept works for the skin color patterning process in T.
lepidus if this energy is proportional to the standard Ising
model energy in the antiferromagnetic phase.
In light of these results, it may be argued that, at a given

Ising energy, the mesoscopic dynamical system can gen-
erate a large number of configurations of sites (i.e., a large
number of macroscopic patterns) that are equivalent in
terms of their corresponding fitnesses. In other words, the
reproductive success that a scale-by-scale color pattern
confers to an animal is likely associated to the general
quality of the pattern—e.g., as defined by the nearest-
neighbor statistics [Figs. 1(c) and 2(b)] and corresponding
to the Ising energy—rather than by its exact specific

configuration. Hence, the Ising model framework illumi-
nates the fact that Gibbs entropy maximization does not
preclude the patterning process to remain highly “evolv-
able”: Stochastic genetic variations (generated by muta-
tions) have the potential to affect the Ising link and site
energies, such that multiple kinds of patterns (Fig. 4) can be
explored, while natural selection drives the system to a
certain mean energy related to the qualitative features of the
patterns (see Supplemental Fig. 7.1 [1]). Concomitantly,
the patterning process would nevertheless remain robust at
all times of this evolutionary exploration of the ðβJ; βBÞ
phase space, because stochasticity generated by entropy
maximization at a given energy of the system is irrelevant
to selection.
We suggest that this combination of “evolvability” and

“robustness” is nontrivial given the strong effective sto-
chastic (entropic) component of the patterning processes
we study here.
The perspective of making local interaction models more

general descriptions of color patterning processes could be
tested by studying other species exhibiting skin scale
flipping dynamics but whose steady-state patterns (i) are
qualitatively different from those observed in T. lepidus and
(ii) would still follow a canonical probability distribution.
Another avenue of further study is to clarify how cell-
biology parameters affect scale-color flipping probabilities
and in which of these cases fitting of the Ising model
remains possible. Such a study would link three spatial
scales: the “microscopic” interactions among cells, the
flipping probabilities of mesoscopic skin scales, and the
“macroscopic” description of skin color patterns.
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