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Abstract. Understanding animal space use and habitat needs is a vital requirement for effective conservation and manage-
ment measures. Considering the multiple instances in which landscapes are anthropogenically altered, it becomes increas-
ingly important to understand what the spatial requirements of an animal are. However, smaller animals, like lizards, re-
quire finer-scale assessments, which cannot always be easily made. Therefore, we calculated home ranges of Lacerta agilis 
using data collected by radio tracking. We then studied microhabitat preference using high-resolution maps generated 
from photographs taken by unmanned aerial vehicles. Overall, lizards in the selected area seem to favour home ranges 
that include blackberry brush while avoiding high vegetation and sand. They use other structures according to individual 
preferences or unstudied factors. Our study portrays an efficient method with high spatial resolution to assess small-ver-
tebrate habitat preferences, which can in turn be used in planning population-specific habitat management or compensa-
tory measures. 
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Introduction

Understanding the habitat and microhabitat requirements 
of animals is a key part of conservation efforts for most spe-
cies. The consideration of ecological requirements such as 
these is vital to proper habitat management (e.g., Castilla 
& Bauwens 1991, Knapp & Owens 2005, Glen & Dickman 
2006, Bai et al. 2020), successful reintroductions (e.g., Piz-
zuto et al. 2007, Liefferinge et al. 2019), and the effec-
tiveness of compensatory measures (e.g., Birtwell et al. 
2005). Ecological requirements, however, constitute a com-
plex network of factors that is not always easy to fully un-
ravel. Fortunately, the concept of home range entails a de-
fined area in which every ecological need an animal has in 
its day-to-day life should be fulfilled, assuming the individ-
ual is successful (Burt 1943). We can therefore, with relative 
certainty, assume that the overall home ranges of individu-
als within stable populations provide everything needed to 
survive and thrive (Burt 1943). Consequently, characteriz-
ing habitat and microhabitat as well as other ecological fac-
tors within an animal’s home range is a great first step to-
wards establishing a species’ or population’s ecological pro-
file, which is of great importance for conservation planning. 

Unmanned aerial vehicles (UAVs) can be a powerful tool 
to monitor the environment. UAVs already find frequent 
application in agriculture where they facilitate the mapping 

of crops (Berni et al. 2009, Kaneko & Nohara 2014, Liu 
et al. 2020). Lately, the use of unmanned aerial vehicles has 
been adopted in biological fields and expanded to answer a 
multitude of questions. Biological fields benefit from broad 
vegetation analysis via remote sensing in the case of post-
fire vegetation surveys for instance (Fernández-Guisura-
ga et al. 2018), or studies ascertaining the influence of ani-
mals on vegetation structure and composition (Qin et al. 
2020). Further applications include the observation of large- 
to medium-sized mammals over great distances, at night, or 
in hard-to-reach locations with thermal imaging (Bushaw 
et al. 2019, He et al. 2020) or identification of specific plant 
species as habitat for specialized arthropods (Habel et al. 
2016). As UAV technology becomes more and more afford-
able, new applications will be developed and survey areas 
will become larger. Its ability to deliver high-resolution in-
formation on vegetation is also useful when assessing mi-
crohabitat selection in animals with small home ranges, 
as the high resolution allows for distinction of small-scale 
structural differences (see Habel et al. 2016).

One animal that is of particular interest in terms of 
micro habitat selection due to its proximity to humans and 
anthropogenically altered landscapes is the Sand Lizard 
(Lacerta agilis Linnaeus, 1758). Lacerta agilis is an on av-
erage 18–25 cm long insectivorous lacertid native to large 
parts of the southern half of the Palaearctic (Edgar & Bird 
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2006). It is diurnal with an annual activity period from 
spring to early autumn while hibernating during the re-
maining months of the year (van Nuland & Strij bosch 
1981, Edgar & Bird 2006). Lacerta agilis favour open-can-
opy landscapes with scattered shrubs over densely vege-
tated areas and therefore thrive in heathlands or marginal 
vegetation (House & Spellerberg 1983, Dent & Speller-
berg 1987, Nemes et al. 2006). On the northern edges of 
their distribution, they are restricted to sand dune veg-
etation while on the southern edges they prefer montane 
areas (Bischoff 1988). They have benefited from anthro-
pogenic influences such as forest clearing and farmland 
creation since medieval times, as these will open new ar-
eas with suitable habitats for them (Bischoff 1988). Due 
to their long history as a synanthropic species, populations 
of L. agilis often live near humans and are therefore easily 
accessible. However, they also often fall victim to develop-
mental expansions, and subsequently become the subjects 
of compensation measures. This, in combination with the 
declining numbers of L. agilis (IUCN 2020), makes it a fit-
ting species for our study and it could be a main beneficiary. 

In this study, we combine high-resolution vegetation 
analysis via unmanned aerial vehicle-and radio-telemetry-
assisted home range assessment in order to calculate and 
quantify the habitat and microhabitat selection of the Sand 
Lizard, L. agilis. We use an unmanned aerial vehicle to re-
cord high-resolution images of the habitat and tag individ-
uals within the habitat with transmitters to determine the 
sizes, limits and variations of their home ranges by means 
of frequently retrieving individuals. We then analyse hab-
itat composition and preference within the home range 
in order to identify important structures at microhabitat 
level. This approach yields a wide range of applications for 
conservation planning and measures and environmen-
tal compatibility assessments. Environmental compatibil-
ity assessments are conducted to test the likely impact of 
a planned developmental project on the environment and 
to integrate appropriate compensatory measures into the 
project plan. As prescribed in Art. 16 of the UVPG (Gesetz 
für die Umweltverträglichkeitsprüfung / Law for the en-
vironmental compatibility assessment) of the Federal Re-
public of Germany for instance, environmental compati-
bility assessments require, amongst other things, a descrip-
tion of the potentially impacted environment (Rödder et 
al. 2016). This includes an inventory and the assessment of 
impacted species. Our method allows the inclusion of the 
microhabitat requirements of affected species in the de-
scription of the environment and makes it easier to pro-
vide the correct microhabitat structures in compensatory 
measures.

Material and methods
Data collection

Our study was conducted in a part of the Dellbrücker 
Heide, a protected heathland landscape to the northeast 
of Cologne, Germany. The study area comprises approxi-

mately 1.3 ha and is bordered by a pond in the north, a 
ridge with vegetation in the east and south, and a forest-
ed strip leading to a road in the west (approximate cor-
ners in WGS 84: NW: 50.981237° N, 7.054102° E; NE: 
50.981262° N, 7.055604° E; SE: 50.980566° N, 7.056012° E; 
SW: 50.980201° N, 7.054175° E). 

In order to find lizards often enough to assess their 
home ranges, individuals were caught and outfitted with 
radio transmitters to retrieve them. We used V1 tags as 
available from Telemetrie-Service Dessau with slight mod-
ifications. In order to extend battery life, signal intensity 
was reduced so that the direction of the signal was still de-
tectable in close proximity. The sensors weighed 0.35 g and 
operated at 200 μW. According to another study conducted 
in the same area (L. M. Schmitz unpubl. data), the average 
adult lizard body weight within this population during Au-
gust and September was 10.5 g, meaning sensors averaged 
3.3% of the weight of averagely sized lizards. Small individ-
uals were not used. The transmitters had an estimated life 
expectancy of 30 days. We used a 4-element Yagi antenna, 
likewise provided by Telemetrie-Service Dessau, optimized 
towards frequencies at 150 Mhz as well as a self-made 5-ele-
ment Yagi antenna constructed together with Werner 
Dreckmann of the BAFF (Bonner Arbeitskreis für Fle-
dermausschutz / Workgroup for bat protection Bonn) ac-
cording to a published instruction plan (Praxisheft 27 für 
Amateurfunk und Elektronik in der Schule und Freizeit, 
pp. 131–133). The self-made antenna was optimized towards 
determining the direction of incoming signals by having 
a narrower cone of detection. As a receiver, we used the 
ICOM IC-R30 from Telemetrie-Service Dessau. 

Radio-telemetry surveys were carried out between 19 
and 28 August 2019, after the breeding season (Edgar & 
Bird 2006) so as to avoid interference with mating or male/
male interactions. Adult lizards were captured by hand in 
order to attach radio transmitters following Warner et al. 
(2006) with modifications in order to accommodate the 
different body plan of Lacerta agilis compared to Amphi­
bolurus muricatus studied by Warner et al. (2006); the at-
tachment procedure is detailed in Fig. 1. Nylon mesh from 
a fly screen was cut in an acutely angled “V” shape and the 
tag was glued to the bottom tip of the “V” with the antenna 
pointing away from the arms. We used superglue (Pattex 
Sekundenkleber Flüssig, cyanoacrylate) to attach the tag 
to the nylon mesh and to later attach the tag to the ani-
mal. Cyanoacrylate glue is commonly used on reptile skin 
(Price-Rees & Shine 2011, van Winkel & Ji 2014, Hansen 
et al. 2020) without any adverse effects observed as the glue 
will be inert once hardened (Hoser 2019). The resulting 
harness was only attached to lizards after the glue connect-
ing the tag and the mesh had completely cured to avoid 
attaching the transmitter to the skin directly. Preparatory 
steps were therefore taken a day before going into the field. 
After lizards had been caught, the harness was placed on 
their backs with the antenna pointing caudally (Fig.  1A). 
The arms of the harness were then drawn over the lizards’ 
shoulder and crossed at the chest (Fig. 1B). The arms were 
then drawn through the armpits towards the transmitter 
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and tied into a knot above the transmitter (Fig.  1C). The 
harness was secured with a drop of superglue anterior to 
the shoulders, behind the armpits, and at the cross over the 
chest (Fig. 1D). Additionally, the knot was secured with su-
perglue and glued to the transmitter while the excess the 
mesh arms was cut off (Fig. 1D). The lizard was then held 
as calmly as possible with its front legs spread so it would 
not touch the glue behind its legs before it was complete-
ly cured, as this would have glued the legs to the flanks. 
During the procedure, special attention was paid to ensure 
the lizards’ shoulder joints were not impaired in their free 
movement and the mesh was tight enough to prevent slip-
ping out but not too tight either, so that the animal would 
not be harmed. The drops of glue in front and behind the 
shoulders are important as lizards would otherwise have 
been able to push their front limbs under the mesh, result-
ing in a much faster loss of the harness. The harness was 
deliberately fixated with glue in key points, allowing the 
glue to come off easily during the animal’s next moult and 
to cover as little skin as possible. Forgoing the use of glue 

to secure the tag to the skin directly was also deliberate, 
as the tag could be removed by cutting the mesh anytime 
without hurting the animal in case severe mobility issues 
became evident. Suitability of the method was assessed 
by watching lizard mobility immediately after the attach-
ment and on every consecutive retrieval. In total, 15 ani-
mals (seven females and eight males) were tagged over a 
period of 1.5 weeks but never more than 10 at a time due to 
permit restrictions. If one animal lost its tag, a new one was 
caught and furnished with a new tag to avoid stressing a 
single animal too much. Animals were visually monitored 
by the authors for 1.5 weeks (19–28 August 2019) daily from 
9 through 16–18 h. Animals were located via radio-teleme-
try and their coordinates were noted. An animal was con-
sidered located when visual confirmed regardless whether 
the animal had moved since its last retrieval or not. Due to 
the animals wearing numbered tags on their backs , they 
were easy to identify even when amongst other tagged in-
dividuals. After the tagged animals were retrieved once, 
they were left undisturbed for a 30-minute interval before 
the retrieval procedure began anew. Since retrieving itself 
usually took 20–30 minutes, this effectively resulted in eve-
ry animal being retrieved once every 50–60 minutes. The 
aim was to achieve at least 19 retrievals per individual dur-
ing the study period to calculate home ranges (after Rose 
1982), but if the tag remained attached, retrievals were con-
tinued. Six lizards lost their tags before 19 retrievals had 
been achieved. A detailed history of retrievals for every in-
dividual can be found in the electronic Supplementary Ta-
ble S1.

Mapping of the area

The study area was mapped using a DJI Matrice 100 fly-
ing platform (“drone”) with two cameras attached which 
were DJI FC350 cameras on a Zenmuse X3 gimbal, a high-
definition RGB camera and a Parrot Sequoia multispectral 
sensor, a multispectral camera recording RGB but also red, 
green, red-edge and near-infrared emissions, each with a 
separate lens. Flights were taken during clear weather and 
low windspeeds on 28 August 2019 at noon. It took two 
20-minute flights back-to-back to record the entire area. 
A flight path was programmed beforehand in the App Au-
topilot by Hangar Technologies Inc., running on an Apple 
iPad mini, to survey the area so that there was at least a 
50  % overlap between neighbouring pictures. The FC350 
was set to record in movie mode, and the Parrot Sequoia 
was set to take a picture every second and save it on a mi-
croSD card. The flight height was set to 35 m above ground. 

Starting and landing periods were removed by cutting 
the resultant video footage and deleting pictures from these 
phases. We used the software Pix4DMapper 4.5 (Pix4D SA 
2019) in order to mosaic the images (or video frames) and 
to compute the maps. Pix4DMapper was also used to cal-
culate a normalized difference vegetation index (NDVI) 
and a digital surface model from the mosaiced maps and 
display it as additional maps. The NDVI is calculated by 

Figure 1. Attachment procedure of the radio transmitter (red 
rectangle) to the lizard via a mesh backpack. Read from A to D. 
Lateral, dorsal and ventral views of each step. Yellow spots mark 
glue drops.
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comparing the near-infrared channel and the red channel 
and provides an index of the amount of photosynthetically 
active vegetation. 

While the images from the multispectral camera and 
the resulting map were georeferenced already, the high-
definition RGB map had to be georeferenced in ArcMap 
10.6 (ESRI 2018), using the Sequoia maps for reference. 
Employing R 3.6.1 (R Core Team 2020), the RGB map was 
resampled to the grid of the multispectral maps, divid-
ed into its red, green and blue bands, and saved as sepa-
rate *.asc files along with the multispectral maps. We per-
formed spearman rank correlation tests to test for correla-
tion between the maps. If two maps were highly correlated 
(r > 0.75), one of them was excluded from further analysis. 
The remaining maps were stacked together with a mask to 
exclude large no-data areas at the edges. The channels of 
the RBG map were recombined by summation into a black 
and white image (since the channels were strongly corre-
lated). This stack was then loaded into ArcGIS again and 
10,000 randomly generated training points were plotted 
onto the stack. Out of these, 9,891 remained after the points 
that lacked data had been eliminated. The training points 
were then manually assigned to habitat classes based on ex-
perience from the field. The real-life habitat served as point 
of reference to ensure classes were distinguished properly. 
The classes were ‘sand’, ‘blackberry brush’, ‘grass’, ‘trees’ (and 
tall bushes), ‘slope vegetation’ (vegetation on the northern 
slope towards the beach), and ‘low vegetation’ (bushes of 
≤ 1 m). The different training points for each class were 
saved as separate Excel files. In DIVA-GIS (Hijmans et al. 
2001), points were then transformed into masks and com-
pared with each other in case one point would have been 
counted towards two classes. 

The Maxent algorithm (Phillips et al. 2004, 2006, 
2017) was used to calculate habitat classes using the train-
ing points of the different classes as samples and the maps 
as environmental layers in order to examine the likelihood 
of each pixel belonging to a certain class based on the col-
our values of the pixel in the different maps. Replications 
for the model were set to 100 and the test percentage was 
20, using a bootstrap approach. The analysis resulted in 
likelihood maps (cloglog format) for each class, depicting 
the chance of every pixel belonging to a specific land cover 
class. The algorithm was first trained with sand as it was the 
most uniformly coloured microhabitat. The resulting map 
of sand was then incorporated as an environmental layer 
for the other classes. A threshold-independent evaluation 
(ROC analysis) was performed. The receiver operating 
characteristic curve (ROC) evaluates the prediction accu-
racy of the model (Swets 1988, Xu et al. 2019). This analy-
sis is a commonly used method to test the utility of a mod-
el, whereby the area under the ROC curve (AUC) provides 
a threshold-independent measure of model performance, 
since it has an intuitive interpretation that random positive 
instances and random negative instances are correctly or-
dered by the classifier (Phillips et al. 2004, 2006, Na et al. 
2018, Xu et al. 2019). The accuracy of a model performance 
is proportional to the AUC value, thus AUC ≥ 0.9 indicates 

that model performance is excellent (Walden-Schrei ner 
et al. 2017, Xu et al. 2019). Additionally, we performed a 
threshold-dependent analysis in DIVA-GIS, for which eve-
rything below the 10-percentile training presence cloglog 
threshold calculated by Maxent was reclassified as ‘no data’ 
while everything above the threshold was resampled to val-
ues between 0 and 1 based on the likelihood of each pix-
el corresponding to the class in question. The 10-percen-
tile training presence cloglog threshold is one of the most 
commonly used thresholds in Maxent analysis (Zarzo-
Arias et al. 2019). It predicts unsuitable habitat for 10% of 
the most extreme training points, assuming that 90% of the 
training points are classified correctly (Kadej et al. 2017, 
Zarzo-Arias et al. 2019). The results of the Maxent analy-
sis are provided in the electronic Supplement Tables S2 for 
the sand analysis and S3 for the following analysis. After 
the Maxent analysis, ‘trees’ and ‘slope vegetation’ (which 
consisted mostly of tall bushes and small trees) were com-
bined to constitute ‘high vegetation’. This step became 
necessary after we had noted a lack of differentiation be-
tween these categories, and that ‘slope vegetation’ was the 
only class defined by its position rather than its properties. 
The combined class ‘high vegetation’, on the other hand, 
is defined by its properties. It has been shown for L. agi­
lis that vegetation structure is the most important factor 
when determining habitat preference (House & Speller-
berg 1983). While this could be an argument for merging 
‘blackberry brush’ with ‘low vegetation’ as well, we decided 
against it. Blackberry is structurally distinct from average 
low vegetation in the area, despite also remaining below 1 
m height, and could therefore be used to see if one species 
differs from the general low vegetation in terms of prefer-
ence, potentially hinting at structural preferences of L. agi­
lis within the class ‘low vegetation’. The likelihood maps 
were then stacked to form one map with the highest like-
lihood value for each pixel at the top, resulting in a map 
displaying the most likely habitat class for every pixel and 
effectively showing the distribution of the aforementioned 
habitat classes. 

Calculation of home range

Home ranges were calculated using R and the packages ade-
habitatHR (Calenge 2006), sp (Pebesma & Bivand 2005, 
Bivand et al. 2008), rgdal (Keitt 2010), and raster (Hij-
mans 2020). Home range was calculated for every individ-
ual with at least 19 retrievals. We calculated a 95% mini-
mum convex polygon home range in the following abbre-
viated MCP (Mohr 1947) and 50% and 95% kernel density 
estimation home range with bivariate normal kernels in the 
following abbreviated K95 and K50, respectively (Worton 
1989). The ad hoc method for the bivariate normal kernel 
for estimating the smoothing parameter h was used (see the 
kernelUD function in the adehabitatHR package Calenge 
2006). The resulting smoothing parameters were 8.987 for 
ID04, 3.795 for ID05, 7.763 for ID06, 5.628 for ID11, 4.083 
for ID14, 4.407 for ID22, 3.232 for ID23, 6.403 for ID24, and 
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4.289 for ID25. Both the kernel density estimation and min-
imum convex polygon methods have been shown to have 
limitations in the study of lizard home range despite being 
the most frequently used methods. Kernel density estima-
tions have been demonstrated to require many retrievals 
and tend to overestimate home ranges drastically depend-
ing on the smoothing parameters chosen (Row & Blouin-
Demers 2006). Lately, they have even been deemed unfit 
for lizard home range assessments by some authors (e.g., 
Row & Blouin-Demers 2006, Getz et al. 2007, Laver & 
Kelly 2008, Sillero et al. 2020). While minimum convex 
polygon estimations are more predictable, they are incapa-
ble of displaying unused areas within a home range due to 
their convex nature. Additionally, they display no informa-
tion about the utilization distribution within the area. A 
solution to this was proposed by Sillero et al. (2020), in 
that small-scale ecological niche models (ENMs) with in-
dividual lizards were calculated within MCP home ranges 
to subtract unsuitable areas. We recreated this by using the 
variables (without the DSM map) and method used previ-
ously to calculate a categorical habitat map with the retriev-
als of an individual lizard to establish a distribution mod-
el. We added a mask encompassing all of the individuals’ 
home range areas in order to facilitate modelling. We then 
excluded areas below the 10-percentile training cloglog 
threshold from the home range as unused areas. We then 
added the resulting home ranges to our calculated home 
ranges with the suffix _ENM, in the following called ENM 
home ranges as opposed to non-ENM home ranges, which 
are the home range estimations without preceding distri-
bution modelling. We chose to keep the old home range 
maps despite their discussed flaws to maintain comparabil-
ity with other studies. A Kruskal-Wallis test was conduct-
ed for all home range types to identify possible differences 
between males and females, as the data did not fulfil the 
assumptions for an AN(C)OVA. Additionally, the Spear-
man’s rank correlation coefficient was calculated in order to 
check for a possible link between the number of retrievals 
and home range sizes. In both cases, p-values were adjusted 
with the false discovery rate (FDR) transformation to ac-
count for multiple tests.

Habitat use, preference and avoidance

Animal movements were approximated by connecting re-
trieval points in chronological order with straight lines. 
Using R, and the packages adehabitatLT (Calenge 2006), 
adehabitatHR (Calenge 2006), maptools (Bivand et al. 
2008), raster (Hijmans 2020), SDMTools (VanDerWal et 
al. 2014), and splancs (Rowlingson & Diggle 2017) we 
simulated 100 movements according to the distances and 
movement angles observed in the actual home ranges, but 
randomized. We calculated new non-ENM home ranges 
from the resulting points (95% minimum convex polygon, 
95% kernel density estimation, and 50% kernel density es-
timation), following similar movement patterns but ignor-
ing habitat. We calculated Jakobs’ electivity index for each 

habitat type ‘sand’, ‘blackberry brush’, ‘grass’, ‘high vegeta-
tion’ (trees and bushes of ≥ 1 m), and ‘low vegetation’ in the 
observed home ranges and the randomly generated home 
ranges using R. Jacobs’ index (Jacobs 1974) was originally 
designed to study food preferences when food was availa-
ble at different abundance (Jacobs 1974). This formula can 
also be used for other resources like habitat, however. The 
index is thus calculated as follows: 

D= H-T
(H+T) - 2HT

with H being the proportional use of the habitat by the 
animal and T being the proportional availability of the 
habitat in the study area. The index suggests an avoidance 
of the habitat if D < 0, a preference for the habitat if D > 0, 
and its use according to the availability if D = 0. 

We then calculated a 95% confidence interval of the 
mean electivity index from the generated home ranges for 
one individual and checked whether the electivity index 
of the observed non-ENM home ranges would fall with-
in that confidence interval. If the observed electivity index 
falls within the confidence interval of the electivity index of 
the randomly generated ones, we cannot exclude the pos-
sibility that the observed habitat preferences are a result of 
the distribution of habitat structures in space. If it is situ-
ated outside the confidence interval, however, we can as-
sume that the observed electivity is not the result of ran-
dom chance, but is deliberately chosen by the individual. 
This was only done with the non-ENM home ranges while 
all following calculations were done with both non-ENM 
and ENM home ranges. Using R, we calculated Spearman’s 
correlation coefficient between the electivity indices for 
different habitats and individuals. This is to identify wheth-
er the preference or avoidance of certain habitats could be 
linked. We furthermore calculated Spearman’s correlation 
coefficient between the electivity indices and home range 
size to potentially identify if habitat preferences change 
with home range size. As before, in both these cases, FDR 
transformation was used to account for multiple related 
correlation tests. 

Results
Radio-telemetry

In total, 15 Sand Lizards (seven females and eight males) 
were tagged, of which six specimens lost their transmitters 
before 19 retrievals could be obtained (see electronic Sup-
plementary Table S1). Consequently, nine specimens (five 
females and four males) kept their tag long enough for a 
sufficient number of retrievals. These animals were called 
ID05, ID11, ID22, ID23, and ID25 (females), ID04, ID06, 
ID14, and ID24 (males), respectively. Animals were mobile 
and could traverse dense vegetation with the tag within 
the first minute after their release. Only one animal was 
lost with the tag attached during the trial, as it left the area 
for very dense vegetation. Every other tag was successful-
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ly recovered. Of the observed animals, none fell to preda-
tion for the entire time the tag was attached, and only one 
had to be cut free from the tag after it entangled a foot in 
the nylon mesh after it had been observed untangled for 
30 minutes prior. 

Mapping of the area and Maxent analysis

In order to create a categorical map showing different habi-
tats within the study area, the mosaic maps recorded by the 
multispectral camera (green, near-infrared, red and red edge 
channels) (Fig. 2); the maps directly calculated by Pix4D as 
a result of the recorded maps (NDVI and DSM) (Fig. 2); as 
well as the RGB map patched together from the video re-
corded by the 4k RGB camera (Fig. 3) were used. Before the 
analysis, Spearman’s correlation coefficient was calculated to 
eliminate repetitive data (Table 1). The RGB map was split 
up into its three channels, but since all parts of the RGB map 
were highly correlated, we only used the sum of all channels 
in the Maxent analysis. Furthermore, the Sequoia red map 
correlated with both the NDVI and Sequoia green maps. 
Since the latter two were not strongly correlated with each 
other, we discarded the Sequoia red map. The Sequoia red 
edge map was correlated with the Sequoia NIR map so that 
the NIR map was kept and the red edge map discarded. 

The AUC values of the Maxent analysis for accuracy 
of the classification of training points (Table 2) show that 
all model performances are of high quality (Swets 1988, 
Walden-Schreiner et al. 2017, Xu et al. 2019). Mean Test 
AUC values for all classes vary between 0.804 for ‘trees’ 
and 0.886 for ‘blackberry’. Furthermore, the mean value 
for ‘sand’ is 0.930. The classes ’slope’ and ’trees’ were com-

Figure 2. Mosaiced maps from the Sequoia and calculated NDVI 
map. Shown are the green channel (A), the near-infrared channel 
(B), the red channel (C), the red edge channel (D), the NDVI (E), 
and the DSM (F). Scales go from low reflection (white) to high 
reflection (colourful) except for the DSM map, which goes from 
low altitude (green) to high altitude (red).

Figure 3. High-resolution RGB map with 95 and 50% kernel den-
sity estimation home ranges for all individuals (A+B) and MCP 
home ranges for all individuals (C). ID04 (red), ID05 (orange), 
ID06 (yellow), ID11 (light green), ID14 (dark green), ID22 (tur-
quoise), ID23 (dark blue), ID24 (purple), and ID25 (pink). 
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bined in the class ‘high vegetation’ since ‘slope vegetation’ 
and ‘trees’ in the area were both high vegetation and it was 
preferable to define the categories by structure rather than 
position. 

The categorical map (Fig. 4) has a high resolution with 
1 pixel corresponding to a 3.6 × 3.6 cm area. White areas in-
dicate the absence of data. ‘High vegetation’ mostly frames 
the area, while ‘grass’, ‘blackberry brush’ and ‘low vegetation’ 
are mostly found in the centre. Bare sand is largely limited 
to the beach area in the north, and the pathways. ‘High veg-
etation’ (43.19%) takes up the highest amount of landcover, 
whereas ‘sand’ (9.04%) takes up the lowest (Fig. 4). ‘Black-
berry brush’ (15.89%), ‘grass’ (14.77%), and ‘low vegetation’ 
(17.12%) are distributed in similar proportions (Fig. 4).

Home ranges

Overall, there were nine specimens that had been retrieved 
often enough to calculate their home ranges (Figs 3, 5). 

In total, four males and five females were suitable for the 
purpose, with ID25 being the least (19) and ID11 and ID22 
the mostly often retrieved ones (59). The data used for the 
Maxent models, as well as the contributions of the maps 
can be found in Table 3. The 10-percentile cloglog train-
ing thresholds, which were used to cut unused habitat out 
of the home range, can also be found in Table 3. Overall, 
test AUC was not quite as good as for the categorical map 
but still deemed sufficient (range: 0.592 ± 0.101 to 0.702 ± 
0.084). 

Overall, home ranges differ in size quite drastically (Fig. 
6), with ID04 having the largest non-ENM K95 home range 
(4057.116 m²), and ID23 having the smallest (781.815 m²). 
While ID23 also has the smallest K95_ENM home range 
(523.968m²), the largest K95_ENM home range was oc-
cupied by ID06 (2315.242 m²). As for the core area, ID04 
has the largest (non-ENM: 1126.074 m², ENM: 697.733 m²) 
while ID23 has the smallest non-ENM (174.518 m²) and 
ID05 has the smallest K50_ENM (143.324 m²). ID04 also 
has the largest MCP home range (non-ENM: 1757.085 m², 

Table 1. Spearman correlation coefficient between multispectral maps (Sequoia), digital surface model (DSM), NDVI, 4K RGB map 
(SumRGB) and its blue, green and red channels. Strongly correlated pairings are marked by *. 

  4kBlue 4kGreen 4kRed SumRGB dsm NDVI Seqoia-
Green

Seqoia - 
NIR

Seqoia- 
RED

Seqoia- 
REG

4kBlue 1
4kGreen 0.834* 1
4kRed 0.884* 0.814* 1
SumRGB 0.952* 0.924* 0.958* 1
dsm 0.078 0.042 0.082 0.07 1
NDVI 0.388 0.199 0.392 0.339 0.354 1
SeqoiaGreen 0.259 0.203 0.304 0.268 0.089 0.388 1
SeqoiaNIR 0.003 0.002 0 0 0.183 0.367 0.186 1
SeqoiaRED 0.325 0.194 0.393 0.318 0.22 0.812* 0.766* 0.023 1
SeqoiaREG 0.006 0.025 0.019 0.016 0.057 0.111 0.349 0.849* 0.116 1

Table 2. Training samples, test AUC and standard deviation, 10% training presence cloglog threshold, and map contributions result-
ing from the Maxent analyses to make the categorical map. Training samples are training points, which were assigned to each class 
as a means of defining it. 

Class Training 
samples

Test AUC 
± SD

10-percentile 
training pres-
ence cloglog 

threshold

SeqoiarGreen  
contribution

SumRGB 
contribution

dsm  
contribution

ndvi  
contribution

sand_mask 
contribution

seqoiarNIR 
contribution

Blackberry 297
0.886 ± 
0.014 0.317 17.130 3.702 34.387 44.015 0.000 0.765

Grass 524
0.880 ± 
0.009 0.414 2.093 5.635 19.224 71.580 0.000 1.469

Low  
Vegetation 129

0.848 ± 
0.037 0.294 15.324 2.648 21.259 32.115 0.000 28.654

Slope 1090
0.848 ± 
0.008 0.378 27.940 4.532 41.039 24.496 0.000 1.992

Trees 1628
0.804 ± 
0.007 0.411 1.223 0.806 27.376 69.952 0.000 0.644
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ENM: 1029.755 m²), and the smallest MCP home range 
was occupied by ID25 (non-ENM: 295.110 m², ENM: 
170.430 m²). Other home range sizes lie between these val-
ues (Fig. 6). On average, for non-ENM home ranges, K95 
home ranges are 1853.263 m² in size. The average sizes of 
K50 and MCP home ranges are 457.053 m² and 808.084 m², 
respectively. As for ENM home ranges, average sizes were 
1141.341 m² for K95_ENM, 326.134m² for K50_ENM, and 
531.721 m² for MCP_ENM. Home range size was not sig-
nificantly correlated the with the number of retrievals in 
any home range (Spearman rank test for K95 home range: 
ρ = 0.36, q = 0.342, for K95_ENM home range: ρ = 0.377, 
q = 0.342, for K50 home range: ρ = 0.36, q = 0.342, for K50_
ENM home range: ρ = 0.443, q = 0.342, for MCP home 
range: ρ = 0.72, q = 0.114, for MCP_ENM home range: ρ = 
0.694, q = 0.114). Similarly, home range size between males 
and females did not differ significantly (Kruskal-Wallis-

test for K95: χ² = 2.16, df = 1, q = 0.212, for K95_ENM: χ² = 
2.16, df = 1, q = 0.212, for K50: χ² = 2.94, df = 1, q = 0.212, for 
K50_ENM: χ² = 3.84, df = 1, q = 0.212, for MCP: χ² = 0.96, 
df = 1, q = 0.327, for MCP_ENM: χ² = 1.5, df = 1, q = 0.265).

Concerning the proportional coverage of the studied 
microhabitat (Table 4), ‘blackberry brush’ and ‘high veg-
etation’ make up the largest parts of the home ranges, with 
each of these covering on average roughly a quarter of the 
entire home range, if not more. ‘Grass’ and ‘low vegeta-
tion’ follow, each making up 13–21% of the area in different 
home ranges. Lastly, ‘sand’ covers the smallest expanse in 
all home ranges, ranging from 2 to 9%. ‘Sand’ coverage is 
especially low in ENM home ranges while it is highest in 
K95_ENM home ranges with 3.27%. This is lower than the 
lowest land cover in the non-ENM home ranges. Standard 
deviations range from ± 3 to 15%, being highest in ‘black-
berry brush’ and ‘high vegetation’, and lowest in sand. 

Figure 4. Microhabitat map depicting the five final microhabitat categories and the area covered by each in m².

Table 3. Training samples, test AUC and standard deviation, 10% training presence cloglog threshold, and map contributions result-
ing from the Maxent analyses for obtaining ecological niche models. Training samples are taken from the retrievals of individuals.

Individual Training  
samples

Test AUC  
± SD

10-percentile 
training presence 
cloglog threshold

SeqoiarGreen  
contribution

SumRGB  
contribution

ndvi  
contribution

seqoiarNIR  
contribution

mask  
contribution

ID04 35 0.702 ± 0.084 0.378 12.170 39.430 33.498 14.901 0
ID05 30 0.655 ± 0.094 0.455 26.787 23.553 38.631 11.029 0
ID06 40 0.600 ± 0.085 0.4849 25.920 17.503 33.354 23.223 0
ID11 37 0.680 ± 0.081 0.366 43.682 8.479 37.635 10.205 0
ID14 22 0.638 ± 0.096 0.501 19.996 18.342 54.627 7.034 0
ID22 40 0.648 ± 0.079 0.445 7.454 22.784 54.137 15.625 0
ID23 28 0.592 ± 0.101 0.477 30.423 14.179 34.290 21.109 0
ID24 23 0.595 ± 0.108 0.512 11.514 44.966 23.611 19.910 0
ID25 16 0.650 ± 0.123 0.467 18.568 23.366 29.889 28.177 0
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Habitat use, preference, and avoidance

We calculated the electivity indices for ‘blackberry brush’, 
‘grass’, ‘low vegetation’, ‘high vegetation’, and ‘sand’ for eve-
ry individual inside their different home ranges (Fig. 7 for 
non-ENM home ranges, Fig. 8 for ENM home ranges), as 
well as the confidence intervals calculated from the simu-
lated non-ENM home ranges (Fig. 7) in order to ascertain 
whether the electivity index falls within the confidence in-

terval. Most electivity indices are outside the confidence 
interval – meaning that the electivity index of the chosen 
habitat structure in the home range is significantly differ-
ent from that of random habitat composition, meaning it is 
likely that the lizards actively choose their home ranges by 
their composition. However, there are 13 instances where 
the observed electivity index lies within the confidence in-
terval of the randomly generated home ranges. Thus, in 
these cases, the observed electivity is not significantly dif-

Figure 5. ENM home ranges of K95 (outer borders), K50 (inner round borders) and MCP (darker, polygon borders) home ranges. 
White areas are excluded from the home range either by missing data or the ENM. Habitat colourcoded as purple for ‘blackberry 
brush’, blue for ‘grass’, light green for ‘low vegetation’, dark green for ‘high vegetation’, and yellow for ‘sand’. 
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ferent from random chance. These instances are exclusive-
ly found for ‘sand’, ‘high vegetation’, and ‘grass’. The elec-
tivity index for ‘sand’ is within the confidence interval in 
the K95 home range and the K50 home range of individu-
al ID05, in the K95 home range of specimen ID23, and in 
the MCP home range of individual ID25. The electivity in-
dex for ‘grass’ lies within the confidence interval in the K50 
home range of individual ID06 and the K95 home range of 
individual ID23. The electivity index for ‘high vegetation’ 
is situated within the confidence interval in the K95 home 
ranges of individuals ID11, ID22, ID23 and ID24 and in the 
MCP home ranges of individuals ID06, ID14, and ID24. 
Overall, our results suggest seven cases of an electivity in-
dex being within the confidence interval in the K95 home 
ranges, two cases in the K50 home ranges, and four cases 
in the MCP home ranges. After adjusting p-values for mul-
tiple correlation tests, no electivity indices are correlated 
with each other within home ranges (Table 5). 

In the K95 home ranges (Fig. 7), an overall preference 
for ‘blackberry brush’ can be observed, with only ID04 
avoiding blackberry bushes and ID14 and ID22 using them 
according to their availability. In K95_ENM home ranges 
(Fig. 8), preferences for ‘blackberry brush’ increase overall 
compared to K95 home ranges, except in ID05 and ID14. 
Electivity indices of ‘grass’ are overall close to zero with 
most animals having a slight preference for grass, or us-
ing it as available, except ID23 and ID25 in their non-ENM 

Figure 6. Microhabitat area (bars), total microhabitat area (sum of bars), and number of retrievals (points) for every individual for 
each of the three calculated home range types both without preceding ENM (left of the pairs) and with preceding ENM (right of the 
pairs) Area depicted in m². Sex is marked next to the IDs of the lizards as M for males and F for females. 

Table 4. Mean and standard deviation of land cover across home 
range types. Home ranges with preceding species distribution 
model are annotated with _ENM. For habitat types, see Fig. 9.

Calculation bb gr lv tv sa

K95 mean 26.88 19.02 18.48 26.71 8.91
K95_ENM mean 29.85 17.34 20.38 29.16 3.27
K95 standard deviation 11.88 5.48 7.21 9.29 5.36
K95_ENM standard  
deviation 10.47 10.04 8.34 14.11 3.81
K50 mean 26.94 14.68 15.06 38.89 4.43
K50_ENM mean 28.62 13.73 15.25 40.15 2.24
K50 standard deviation 14.68 8.57 11.18 16.39 3.77
K50_ENM standard  
deviation 14.55 11.33 11.19 19.72 2.25
MCP mean 28.87 16.99 17.74 28.66 7.74
MCP_ENM mean 31.69 16.78 18.89 31.53 2.76
MCP standard deviation 12.81 6.28 8.10 12.33 4.99
MCP_ENM standard devia-
tion 11.15 9.91 9.07 15.80 2.91

home ranges and ID05 and ID23 in their K95_ENM home 
ranges. Here the preference is stronger. Additionally, ID24 
slightly avoids grass and ID04 strongly avoids grass in its 
K95_ENM home range – which is a drastic difference com-
pared to its non-ENM home range. In non-ENM home 
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Figure 7. Jacobs’ electivity index for ‘blackberry brush’, ‘grass’, ‘low vegetation’, ‘high vegetation’, and ‘sand’ within the K95, K50 and 
MCP home ranges of studied individuals. Tips of the bars represent the Jacobs’ electivity indices for the observed home ranges while 
red dots show the averages of simulated home ranges with 95% confidence intervals. For small confidence intervals, red dots have 
been replaced with red ellipses in order to leave the confidence intervals visible.

Figure 8. Jacobs’ electivity index for ‘blackberry brush’, ‘grass’, ‘low vegetation’, ‘high vegetation’, and ‘sand’ within the K95, K50 and 
MCP home ranges with preceding ENM. Tips of the bars represent the Jacobs’ electivity indices for the observed home ranges.
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ranges, ‘low vegetation’ is avoided by ID23, ID24, and ID25, 
but sought out by ID04, ID14 and ID22 – while ID05, ID06 
and ID11 seem to neither prefer nor avoid it. Meanwhile, 
in their ENM home ranges, ‘low vegetation’ is avoided by 
ID23, preferred by ID05 and ID14, and used as available 
by the rest. ‘High vegetation’ is universally avoided, save 
for ID04, which uses it according to availability in both its 
K95 home ranges, as well as ID11, ID14 and ID22 which use 
high vegetation according to its availability in their ENM 
home ranges. ‘Sand’ is avoided by ID11, ID14, ID23, and 
ID25, while it is preferred by ID04, ID06, and ID22. ID05; 

and ID24 exhibits little in terms of avoidance or preference 
for ‘sand’ in its non-ENM home ranges, while this substrate 
is almost universally strongly avoided in K95_ENM home 
ranges, except for ID04, ID05, and ID24, which use it ac-
cording to its availability. On average, ‘blackberry brush’ is 
favoured while ‘sand’ is avoided. ‘High vegetation’ is avoid-
ed in K95 and MCP home ranges. ‘Grass’ and ‘low vegeta-
tion’ are on average used according to availability. Electivity 
indices of ‘sand’ also show the highest spread of values, and 
this substrate is especially avoided in ENM home ranges 
(Fig. 9). MCP indices are very similar to their K95 counter-
parts in both ENM and non-ENM home range types, and 
show mostly similar preferences and avoidances. 

In the core areas of both home range types, ‘blackber-
ry brush’ is almost universally preferred except by ID04 
and ID14, which avoid it in both their ENM (Fig. 8) and 
non-ENM (Fig. 7) home ranges. ‘Grass’ is avoided by ID04, 
ID14 and ID24 in both their K50 home ranges. ID11 and 
ID22 avoid ‘grass’ in their K50_ENM home ranges, but use 
it according to availability in their K50 home ranges. Addi-
tionally, ‘grass’ is used according to its availability by ID06 
in both home range types and by ID25 in its non-ENM 
home range. ‘Grass’ is even sought out by ID05 and ID23 
in both home ranges and by ID25 in its non-ENM home 
range. ‘Low vegetation’ is preferred or avoided similarly be-
tween non-ENM and ENM home ranges in the core area 
with only ID14 showing a strong preference. ID11 and ID23, 
on the other hand, avoid it whereas the other individuals 
use ‘grass’ as per its availability. ID25 avoids ‘grass’ a little 
more in its K50 home range compared to its K50_ENM 
home range, where it is used more as per its availability. 
Similarly, ‘high vegetation’ use is more or less constant be-
tween non-ENM and ENM home ranges in any individ-
uals. ID04 prefers ‘high vegetation’, while ID04 and ID25 
avoid it. The remaining individuals use ‘high vegetation’ 
more or less according to availability. ‘Sand’ is universally 
avoided in ENM home ranges, while it is almost universal-
ly avoided in non-ENM home ranges, with ID04, ID22 and 
ID25 coming up with an index around zero. Overall, differ-
ences between ENM and non-ENM home ranges are less 
drastic and less frequent in core areas. However, in core 
areas, variation between individuals is higher than in K95 
and MCP home ranges. On average, ‘blackberry brush’ is 
preferred within the core area, while ‘sand’ is avoided and 
the remaining categories average out to neither preference 
nor avoidance (Fig. 9). In the core area, the difference in in-
dices for ‘sand’ between non-ENM and ENM home ranges 
is smaller due to the already lowered index in non-ENM 
home ranges. 

Home range size and electivity index

The electivity index of ‘grass’ shows a strongly negative 
correlation with home range size while the electivity index 
for ‘sand’ is strongly positively correlated with home range 
size in the K95 home range. Neither correlation is found 
in the K95_ENM home range (Table 6). In the non-ENM 

Table 5. Spearman’s correlation coefficients for all pairings of 
Jacobs’ electivity indices within the home ranges across all in-
dividuals. No pairings were significantly correlated after p-value 
adjustment by FDR. Home ranges with preceding species distri-
bution model are annotated with _ENM.

Home  
Range Class Black- 

berry Grass Low  
Vegetation

High  
Vegetation

K95 Grass 0.367

K95 Low  
Vegetation -0.767 -0.483

K95 High  
Vegetation -0.333 -0.700 0.167

K95 Sand -0.300 -0.600 0.167 0.167
K95_ENM Grass 0.383

K95_ENM Low  
Vegetation -0.667 -0.250

K95_ENM High  
Vegetation -0.650 -0.833 0.350

K95_ENM Sand 0.402 0.033 -0.167 -0.427
K50 Grass 0.700

K50 Low  
Vegetation -0.583 -0.483

K50 High  
Vegetation -0.600 -0.883 0.217

K50 Sand -0.183 -0.150 0.067 0.150
K50_ENM Grass 0.617

K50_ENM Low  
Vegetation -0.467 -0.167

K50_ENM High  
Vegetation -0.800 -0.867 0.200

K50_ENM Sand 0.254 0.119 0.220 -0.220
MCP Grass 0.233

MCP Low  
Vegetation -0.700 -0.100

MCP High  
Vegetation -0.383 -0.733 -0.033

MCP Sand -0.133 0.150 -0.383 -0.083
MCP_ENM Grass 0.667

MCP_ENM Low  
Vegetation -0.583 -0.217

MCP_ENM High  
Vegetation -0.733 -0.950 0.200

MCP_ENM Sand 0.485 0.377 -0.084 -0.561
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K50 home range, the electivity index of ‘high vegetation’ is 
strongly positively correlated with home range size but not 
in the ENM K50 home range (Table 6). 

Discussion

In summary, it can be observed that the tagging of the indi-
viduals and map generation by UAV have both proven suc-

cessful. Lizards could be located reliably and overall no ad-
verse consequences were observed from the attached trans-
mitters in all but one case, which was swiftly resolved. The 
resulting maps were of high resolution and they accurately 
depicted the environment when compared directly to the 
area. Within home ranges, the preferences and avoidances 
for low vegetation and blackberry brush are reliably non-
random, while for some individuals, preference or avoid-
ance for sand, grass and high vegetation is not always sig-
nificantly different from random chance. Overall, blackber-
ry bushes are strongly preferred, while sand is avoided and 
high vegetation is avoided in K95 and MCP home ranges. 
Other microhabitats average around zero preference or 
avoidance across all individuals. In core areas, variability 
in electivity is overall higher between individuals than in 
K95 and MCP home ranges. Core Areas show less variation 
between ENM and non-ENM home ranges. K95 size corre-
lates negatively with the electivity index of grass and posi-
tively with the electivity of sand in non-ENM home ranges. 
Core area size correlates positively with the electivity for 
both high vegetation and sand. ENM home range size does 
not correlate significantly with any electivity index.

Figure 9. Boxplots showing the average (blue) and median electivity indices for ‘blackberry brush’ (bb), ‘grass’ (gr), ‘low vegetation’ 
(lv), ‘high vegetation’ (tv), and ‘sand’ (sa) for all individuals across their 95% kernel density estimation home ranges (A), their 50% 
kernel density estimation home ranges (B), and their minimum convex polygon home ranges (C) with and without preceding ENM. 

Table 6. Spearman’s correlation coefficients for all electivity in-
dices with the size of their home ranges. Significantly correlated 
pairings are marked with *.

Class K95
K95_
ENM K50

K50_
ENM MCP

MCP_
ENM

bb -0.317 -0.2 -0.367 -0.517 -0.533 -0.333
gr -0.8* -0.55 -0.733 -0.633 -0.617 -0.633
lv 0.333 0.233 0.05 0.067 0.4 0.2
tv 0.483 0.217 0.833* 0.7 0.617 0.5
sa 0.783* 0.385 0.45 0 0 0.05
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Radio-telemetry

The number of tagged individuals is comparable to sim-
ilar studies (Warrick et al. 1998, Refsnider et al. 2015, 
Wieczorek et al. 2020, Clement & Rödder 2021). The 
observed unimpeded mobility and near-complete absence 
of entanglement and predation suggest that the method, 
originally described by Warner et al. (2006), can also be 
used for Lacerta agilis with the modifications described 
herein. Although formal testing has yet to be conducted, as 
of now, suitability is based on observations. As Warner et 
al. (2006) have described, frequent observations are ben-
eficial to reducing accidental mortality, as entangled liz-
ards can become easy targets for predators and are at an 
increased risk of overheating. The one instance in which 
a lizard’s foot became entangled was promptly resolved, 
since the lizard had been observed unentangled 30 min-
utes prior. Yet, the possibility of entanglement is certainly 
there, and we strongly advise to not only check regularly 
on individuals when using this method, but to also check 
for entangled vegetation or body parts whenever a lizard is 
located, in order to avoid any form of impairment, stress 
or mortality. The method portrayed here can be improved 
and adjusted to suit other setups. For example, Refsnider 
et al. (2015) proposed to paint the transmitters with acrylic 
paint to match the lizard’s dorsal coloration and thus re-
duce detectability by predators. The same method has also 
been adjusted for the more cylindrical body shape of Scin-
cidae (Price-Rees & Shine 2011). Different materials for 
the harnesses have been tried out, like Co-Flex® (Andover 
Healthcare Inc.), or the rubber of bicycle tubes (van Win-
kel & Ji 2014). However, van Winkel & Ji (2014) observed 
abrasions and skin lesions after a few weeks when using 
rubber harnesses on geckos, hence discouraging their use 
in transmitter attachment. Co-Flex® did not have the same 
adverse effects according to this study. 

Mapping of the area and Maxent analysis 

The generated maps shown in Figures 2 and 3 are all ac-
curate representations of the study area when compared to 
reality on site. There are some small merging problems, oc-
curring mainly on the edges of the map, outside of the ac-
tual study area. It is therefore important to include wide 
margins all around during the recording phase. Record-
ing of images via UAV proved to be a successful way of 
capturing detailed maps of small areas. UAVs can hence 
be a powerful tool to adapt large-scale, satellite-based eco-
logical procedures to smaller scales and finer resolutions. 
Satellite-based maps often fail the intended purpose due 
to insufficient resolution or varying temporal resolution 
(Habel et al. 2016). The ability to generate maps of exactly 
the required area at exactly the required time will be a ma-
jor contributor towards more accurate ecological assess-
ments. It also facilitates novel methods in the assessment 
of space use, like using ecological niche models to assess 
home ranges (Sillero et al. 2020). This method is limited 

by the size of monitorable area. However, additional bat-
tery packs, an on-site charging station, or more advanced 
UAVs can drastically increase the size the of coverable area, 
should the means for purchasing these be available. In con-
clusion, UAV-assisted habitat recording is a fast and effi-
cient way to obtain high-resolution habitat maps. It can be 
limited by flight time, which is dependent on the budget. 
Although first-time costs can be comparatively high, once 
acquired, UAV-assisted habitat recording becomes a very 
time- and cost-effective method when used regularly. 

Maps were tested for correlation to reduce data size and 
eliminate redundant data. This resulted in the channels of 
the RGB map, the Sequoia red, and the Sequoia red edge 
maps being discarded as it led to the highest variety of non-
redundant maps. The AUC values for all classes of the Max-
ent analysis indicate good model performance (Walden-
Schreiner et al. 2017, Xu et al. 2019). The map resulting 
from the Maxent analysis (Fig. 4) has a resolution of 1 pix-
el corresponding to a 3.6 × 3.6 cm area. This level of de-
tail is quite impossible to achieve by satellite images at pre-
sent (Purnamasayangsukasih et al. 2016, Liu et al. 2020). 
The distribution of habitat structures shows that high veg-
etation covers roughly three times the area that blackberry 
brush, grass and low vegetation do. Sand covers even less 
ground. Aside from the fact that, from above, taller struc-
tures obscure lower structures beneath, the large amount of 
high vegetation is also explained by the growth surround-
ing the study area. We estimate that all chosen habitat class-
es cover enough land to be viewed as relevant to L. agilis. 
The high amount of missing data has several reasons. First, 
the water of the pond area has not been classified due to its 
being irrelevant for the non-aquatic L. agilis. Second, mis-
takes in stitching the images together at the edges of the 
map create areas of ‘no data’ within the high vegetation out-
side the study area. Third, it is possible that uniquely col-
oured patches of vegetation have not been recognised by 
the model. Inspection of the categorical map (Fig. 4) shows 
that those spots are mostly restricted to the high vegeta-
tion surrounding the area. Most relevant is the observation 
that the transition zone from high vegetation to sand in the 
northern parts of the study area and at the beach came out 
poorly mapped. This flaw is probably due to the model not 
recognising shaded sand as such. It could be improved by 
adjusting the time of UAV overpasses to when that area 
is not shaded, or by including more shaded areas into the 
training points for sand in the Maxent analysis. We there-
fore strongly advise a conscious effort to include shaded ar-
eas in training points. 

Home ranges

The observed home ranges are larger than most home 
ranges of sand lizards reported in the literature. Lacerta 
agilis home ranges have been calculated all over Europe. 
Even when looking only at a small subset of studies, results 
vary greatly and range from as small as 13.6 m² (Heym et al. 
2013) to more than 1000 m² (Nicholson & Spellerberg 
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1989). In all cases, average home range size was larger for 
males, although significance was not always confirmed. 
We did not find any significant differences between males 
and females in our study. The lack of difference is, in our 
opinion, at least partially due to our small sample size of 
four males versus five females. It remains that the average 
home ranges in our study are much larger than in other 
recordings. This is partially mitigated by adding an eco-
logical niche model to our home range calculation, and 
cutting out unused habitat from the home ranges. ENM 
home ranges are closer to traditional estimates and more 
accurately portray the habitat actually used (Sillero et al. 
2020). Furthermore, Turner et al. (1969) tested the rela-
tionship between lizard weight and home range size across 
many lizard species and came to the conclusion that A = 
171.4W0.95 (A = home range area in m² and W = lizard 
body weight in g) is the best-fitting equation for a rough 
home range size estimation in lizards. Assuming a weight 
of 10 g for L. agilis, we come to a predicted home range 
size of 1527.604 m². Most K95 home range sizes are around 
that prediction, while MCP home ranges fall short of it, 
and are therefore closer to older predictions. It is note-
worthy that with a K95 home range size < 3000 m², ID04 
and ID06 have home ranges twice as large as Turner at 
al. (1969) predict. In general, we assume the calculated 
home ranges to be plausible, but we acknowledge the dif-
ferences between our recordings and past publications. 
Many older calculations applied the MCP method or an 
offshoot of this method, which, as is evidenced here as 
well, result in smaller home range estimates even with the 
same data sets (see also, e.g., Hansteen et al. 1997, Barg 
et al. 2005, Börger et al. 2006). Additionally, habitat qual-
ity/abundance of key resources can have an inverse effect 
on home range size, as lower densities of food and other 
necessities like oviposition sites, shelters or basking are-
as potentially require lizards to move larger distances to 
satisfy their needs (Rose 1982). Finally, the number of re-
cords has shown to be a strong influence on estimations 
(Nicholson & Spellerberg 1989) although no such con-
nection has been found in this case – possibly due to the 
small sample size. Disturbances by humans, such as the 
ones observed in our study area, could also lead to larg-
er home ranges, as lizards would need access to resourc-
es even whilst evading human passers-by. Moreover, the 
intensity of human traffic could also affect microhabitat 
structure. It is possible that disturbances during retrievals 
would lead individuals to move across greater distances in 
order to evade the scientists. The effect of increased activ-
ity after handling and observation has been demonstrated 
in the lizard Tiliqua rugosa (Kerr et al. 2004). However, in 
this study, the risk was deemed unavoidable and if this had 
an effect, some lizards were clearly more affected than oth-
ers. In future studies, stationary telemetry receivers (e.g., 
Gottwald et al. 2019) could be installed, using triangu-
lation to locate tagged lizards within the area without the 
need for interference as long as the method of attachment 
was proven safe enough to not risk entanglement and a 
need for regular check-ups. 

Average land cover and low standard deviations for 
‘sand’ show a fairly constant portion of 2–8% sand within 
home ranges. This is in accordance with previous studies 
showing the necessity for a certain amount of open sub-
strate in a L. agilis home range (Wouters et al. 2012). This 
makes sense, since open substrate – and especially sand – 
can be beneficial to thermoregulation due to its higher heat 
capacity. Generally, populations of L. agilis across Europe 
need a certain amount of open space despite their require-
ments for brush (Nemes et al. 2006, Wouters et al. 2012, 
Heltai et al. 2015, Mizsei et al. 2020). This might also be 
the case here, since the low standard deviation in land cover 
and the high variability in electivity indices for ‘sand’ sug-
gests that lizards want to have a certain portion of their 
home range (here 2–8% on average) to be open sand and 
avoid or prefer sand accordingly. However, it is worth not-
ing that within ENM home ranges, ‘sand’ is reduced to com-
prise only 2–4% of the home ranges. This shows that niche 
models cut out a lot of the sand present in home ranges as 
unused habitat, marking ‘sand’ as a habitat structure to be 
mostly avoided, as is supported by the low electivity indi-
ces discussed below. Meanwhile, other classes experience 
higher amounts of proportional variability within home 
ranges. Previous studies have shown high intraspecific var-
iability in grass and bush cover between sexes and ontoge-
netic stages (Grozdanov et al. 2014). The higher individ-
ual variability found in this study could hint towards these 
findings, but cannot be verified due to sample constraints. 

Significance of Jacobs’ electivity index

In most cases, Jacobs’ Electivity Indices of habitat classes 
within lizard home ranges are significantly different from 
Electivity Indices of randomly generated home ranges. 
Since Jacobs’ electivity index calculates the use of resources 
relative to their availability (Jacobs 1974), this means the 
individual in question elects to use its surroundings differ-
ently from the average of 1000 simulated individuals that 
have similar mobility but no regard for habitat structure. 
Therefore, it can be assumed that in most cases, lizard habi-
tat use is non-random. This is to be expected since habitat 
composition within the home range is specific to the ani-
mal’s needs (Burt 1943). On the other hand, in cases where 
the observed electivity index lies within the confidence in-
tervals of the randomly generated indices, random use of a 
microhabitat cannot be ruled out. In cases of smaller home 
ranges, like with ID05, ID14, ID23 and ID25, or fewer re-
trievals like ID25, the method of generating random home 
ranges could lead to home ranges closer to the observed 
ones, as less options of recombination are available. 

Structural preferences and avoidances

On average, ‘blackberry brush’ is preferred while ‘sand’ is 
often avoided as evidenced by their average electivity in-
dices. ‘Grass’ and ‘low vegetation’ usually average around 
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an electivity index of zero while ‘high vegetation’ shows an 
average slightly below zero in K95 and MCP home ranges. 
However, the spread of values signifies major individual 
differences in most cases and is especially widely spread in 
core areas. On the other hand, differences between ENM 
and non-ENM home ranges are overall smaller and less 
frequent in core areas than in K95 and MCP home ranges.

Preference for ‘blackberry brush’ is unsurprising, as 
L. agilis is known to respond positively to the presence of 
low, shrubby vegetation (Amat et al. 2003, Edgar & Bird 
2006, Nemes et al. 2006, Heltai et al. 2015, Mizsei et al. 
2020). Since ‘blackberry brush’ is clearly favoured in al-
most all home ranges, while preference for other low veg-
etation fluctuates, we can assume that L. agilis actively seeks 
out the properties of blackberry bushes over other vegeta-
tion if the costs of doing so are not too high. Mizsei et al. 
(2020) cited vegetation openness as one desirable factor for 
L. agilis. Blackberry bushes in the area were generally more 
open than most other bushes, letting through more sunlight 
while also being spiky enough to discourage predators and 
humans from entering. These factors may place ‘blackberry 
brush’ higher on the shrub preference scale than the aver-
age low vegetation found in the area. An extensive analy-
sis of preferred bush species, to draw out favoured struc-
tural properties as was conducted by Mizsei et al. (2020), 
might provide the necessary insights to further sub-classify 
the class of ‘low vegetation’ based on structural properties 
The overall wider spreads of electivity indices across most 
structures in core areas suggest that core areas differ more 
strongly on an individual basis. Core areas do not contain 
as much unused habitat either, as shows in the lack of large 
differences between non-ENM and ENM core areas. Habi-
tat structure could be a secondary criterion in determining 
core areas for the lizard, overshadowed by other, unstudied 
factors. One idea would be that a core area could be defined 
by the presence of foraging, thermoregulation and hiding 
spots in close proximity to each other, which can occur in 
a multitude of ways. The overall preference for either ‘high 
vegetation’ (ID04), ‘low vegetation’ (ID14), or ‘blackberry 
brush’ (all other individuals) as structures often associated 
with favoured burrows (Grozdanov et al. 2014), seems to 
favour that hypothesis. Similarly, the more frequent avoid-
ance of ‘grass’ and open ‘sand’ compared to K95 and MCP 
home ranges in the core area also favours the hypothesis, 
as these structures do not conceal burrows well and expose 
their entrances. To prove this hypothesis, a closer examina-
tion of core areas, including shelter placements, would be 
needed. While ‘sand’ is almost universally avoided, ENM 
home ranges show an even stronger avoidance of ‘sand’. As 
discussed previously, lizards seem to seek out a certain small 
percentage of ‘sand’ within their habitats (Nemes et al. 2006, 
Wouters et al. 2012, Heltai et al. 2015, Mizsei et al. 2020). 
However, the thermoregulatory benefits of sand can already 
be exploited in small patches, while large open areas are 
more dangerous, exposing the animal to predators. It is like-
ly that electivity indices are low because there are far more 
sandy patches available than are needed. It is worth keeping 
in mind that the niche model cut out habitat based on lizard 

locations and lizards may be less likely to be found on open 
sand when disturbed regularly, as in this study setup.

‘High vegetation’ is usually avoided or used according 
to availability with one exception (ID04). This finding is 
in accordance with the results of most previous studies 
(House & Spellerberg 1983, Nemes et al. 2006, Mizsei et 
al. 2020). Due to their small size and non-arboreal lifestyle 
(Edgar & Bird 2006), vegetation that spreads out higher 
above the ground, like trees, is very different for L. agilis 
than bushes that spread closer to ground level. The former 
does not offer a lot of protection to L. agilis but casts large 
shadows. This leads to the lizard being exposed to ground 
predators while also often having to cover larger distances 
between potential basking spots and appropriate shelters. 
Since ‘high vegetation’ is not excluded from ENM home 
ranges in the manner ‘sand’ is, it is possible that ‘high veg-
etation’ is used as cover to an extent, despite being overall 
avoided if there are better alternatives. While some indi-
viduals do show preference or avoidance for ‘grass’, there is 
no clear trend visible. Usage of ‘grass’ could just be based 
on its structure and whether it can serve as cover or for 
basking. 

Home range size and electivity index

Correlations in non-ENM home ranges suggest that with 
larger K95 home ranges, electivity for ‘grass’ decreases, 
while electivity for ‘sand’ increases. Within core areas, elec-
tivity of ‘high vegetation’ is higher in larger core areas. As 
discussed previously, large home ranges can be a sign of 
lower structural quality within the home range, as individ-
uals would need to travel greater distances to find all nec-
essary resources (Rose 1982). This could potentially lead 
to areas that are rarely used and mostly just traversed, or 
circumvented, within the home range. While large quanti-
ties of open microhabitat are undesired due to higher ex-
posure to predators and longer distances between resourc-
es (House & Spellerberg 1983), ‘sand’ could be more fa-
vourable to lizards than ‘grass’ in cases where these areas 
are unavoidable. On the one hand, ‘sand’ could be more 
favourable to frequent travelling as it may offer less resist-
ance than ‘grass’ does and thus, can be traversed much 
quicker. Larger-scale studies on dispersal movements in 
Natterjack Toads (Epidalea calamita) have shown that sand 
is physically easier to traverse than grassy terrain for the 
toads (Stevens et al. 2004). To our knowledge, there have 
not been any similar studies for lizards, nor for L. agilis 
in particular, but we assume that vertical structures in a 
habitat may physically hinder to some extent most species 
of similar size in traversing it. On the other hand, unlike 
grass, sand brings about unique advantages for thermoreg-
ulation, digging, and oviposition due to its high heat ca-
pacity and looseness (Rose 1982). Given that high vegeta-
tion also generally proves unsuitable, the same reasoning 
can be applied to the larger amount of high vegetation in 
core areas. As habitat quality decreases, the core area needs 
to be larger to encompass all necessities leading to a larger 
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amount of less suitable habitat lying between core necessi-
ties. We see our argumentation supported by the fact that 
these relationships are not mirrored in ENM home ranges. 
We theorize that the niche model has excluded a good part 
of these habitats due to lack of usage. 

Conclusion

Radio-telemetry and unmanned aerial vehicle-assisted 
habitat recording have both proven to be successful in ac-
quiring high-resolution habitat and home range informa-
tion on L. agilis. Tagging of Lacerta agilis with radio trans-
mitters was successful, as these remained attached and al-
lowed the reliable retrieval of individuals. However, these 
methods still required frequent revisits, as the risk of en-
tanglement was not fully eliminated. UAV recordings of 
multiple colour channels resulted in maps that distinguish 
between selected habitat structures. The greatest benefit 
has proven to be the control of spatial and temporal res-
olution while the main limitation of the method is flight 
time. Improvements can be made by avoiding shaded ar-
eas as much as possible while recording and incorporating 
shaded areas in the training points to help the model to 
recognise them. 

Overall, L. agilis in this population tend to actively in-
corporate blackberry brush in their home ranges while on 
average avoid high vegetation and sand; grass and low veg-
etation differ from individual to individual but average out 
around no preference. Most preferences show high indi-
vidual variation, which is most likely based on unexplored 
characteristics. Overall, we hypothesise that high veg-
etation and sand are largely unsuitable and incorporated 
mainly as travel routes between resources with two excep-
tions: one being that some grassy and sandy patches are 
needed for basking, but never anywhere near in the quan-
tities present in our study area, and the second exception 
being that high vegetation does not seem to be avoided in 
core areas. Overall, preferences in core areas show higher 
individual variance then in K95 or MCP home ranges, sug-
gesting that habitat composition might play a secondary 
role when determining core activity areas. 

Overall, our study reveals interesting preferences and 
connections between habitats occupied by L. agilis. One 
has to be careful not to overinterpret the results, though, 
and keep in mind that some results may stem from habitat 
arrangement within the area and other, unstudied factors. 
Proportions and preferences of individuals can however be 
of great help to conservation planning and measures and 
serve as guides on how to detect, manage or create habitats 
suitable for L. agilis.
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