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Abstract
Invasive species can carry parasites to introduced locations, which may be key to understand the success or failure of spe‑
cies establishment and the invasive potential of introduced species. We compared the prevalence and infection levels of 
haemogregarine blood parasites between two sympatric congeneric species in Lisbon, Portugal: the invasive Italian wall 
lizard (Podarcis siculus) and the native green Iberian wall lizard (Podarcis virescens). The two species had significant differ‑
ences in their infection levels: while P. virescens had high prevalence of infection (69.0%), only one individual of P. siculus 
was infected (3.7%), and while P. virescens exhibited an average intensity of 1.36%, the infected P. siculus individual had 
an infection rate of only 0.04%. Genetic analyses of 18S rRNA identified two different haemogregarine haplotypes in P. 
virescens. Due to the low levels of infection, we were not able to amplify parasite DNA from the infected P. siculus indi‑
vidual, although it was morphologically similar to those found in P. virescens. Since other studies also reported low levels 
of parasites in P. siculus, we hypothesize that this general lack of parasites could be one of the factors contributing to its 
competitive advantage over native lizard species and introduction success.
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Introduction

Biological invasions are a contemporary global problem, 
with major economic and ecological impacts, and are 
directly linked to the current loss of biodiversity (Sim‑
berloff et al. 2013). Although research regarding biologi‑
cal invasions has expanded extensively in recent decades, 

less attention has been given to the role of parasites in this 
phenomenon. However, the interchange of parasites is of 
major concern, whether the transmission is from introduced 
to native species (spillover) or vice versa (spillback) (Wells 
et al. 2015). Parasites can have notable impact on host com‑
munities, ultimately shaping the biodiversity distribution 
and the structure of ecosystems (Tompkins et al. 2011). As 
such, parasites may be crucial to understand the success or 
failure of species establishment and the invasive potential of 
introduced species, through either their presence or absence 
(Poulin 2017). Indeed, the “enemy release hypothesis” pre‑
dicts that as an introduced species is no longer exposed to 
the predators and pathogens from their native range, it will 
have a competitive advantage over native species in the new 
colonized habitats (Colautti et al. 2004). On the other hand, 
if an introduced host species carries parasites, and settles 
quickly and efficiently in the new location, the native host 
species might be exposed to these new parasites and will 
have no time to adapt to this threat. This is of particular 
concern when introduced and native host species are closely 
related and ecologically similar, as this increases the prob‑
ability and speed of parasite interchange, since for example 
their immunology should be similar (Young et al. 2017).
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In the current study, we compare the infection by 
haemogregarines (blood parasites from the phylum Api‑
complexa) between two congeneric lizard species that live 
in sympatry in Lisbon, Portugal: the invasive Italian wall 
lizard (Podarcis siculus) and the native green Iberian wall 
lizard (Podarcis virescens). Podarcis siculus is native to the 
Italian Peninsula and the Adriatic coast, but has numerous 
introduced populations worldwide, having arrived to Lisbon 
20 years ago (González de la Vega et al. 2001). This liz‑
ard represents a risk to native lizards as it can outcompete, 
hybridize, or displace them (e.g. Capula et al. 2002; Damas‑
Moreira et al. 2020). Podarcis virescens is a native species 
of the Iberian Peninsula, which occupies central Spain and 
southern Portugal (Geniez et al. 2014) and has no reported 
introductions elsewhere. These two lizard species have over‑
lapping habitat and presumably similar dietary preferences 
(Arnold and Burton 2002; Ribeiro and Sá‑Sousa 2018), and 
therefore compete for similar resources. In Lisbon, the two 
lizards occur in sympatry, and present differences in their 
behaviour and competition skills (Ribeiro and Sá‑Sousa 
2018; Damas‑Moreira et al. 2019, 2020). Given the recent 
origin of introduction of P. siculus, these two species, one a 
known invasive species and the other showing no evidence 
for this, can be useful to study the interchange of parasites 
between closely related native and introduced host species, 
and its role in establishment success.

Materials and methods

In the spring of 2017, 27 adult males of P. siculus and 29 
adult males of P. virescens were collected from the urban 
gardens in Parque das Nações, Lisbon, Portugal (N 38° 45′ 
43, W 9° 5′ 41). Females were not included in the study, as 
their reproductive status might affect infection levels (Maia 
et al. 2014). Blood was collected on slides for microscopy 
and on Whatman paper for genetic characterization. Preva‑
lence (the percentage of infected individuals in a population) 
was determined by screening the blood slides for haemogre‑
garines at 400 × magnification under an Olympus CX41 
microscope with an in‑built digital camera (SC30; Olympus, 
Hamburg, Germany). To estimate the intensity (percentage 
of infected cells per 2500 erythrocytes), five random areas 
of each slide were photographed at 400 × magnification with 
the cell^B software (Olympus, Münster, Germany), and 500 
erythrocytes per area were counted in ImageJ v.1.50b (as in, 
e.g., Maia et al. 2014). Statistical differences in prevalence 
between lizard species were estimated using Fisher’s exact 
test performed in R v.3.3.1 (R Core Team 2016). No statis‑
tical analysis could be performed on the parasite intensity 
values as only one P. siculus individual was infected.

For the genetic characterization, we extracted DNA from 
the blood of all infected individuals using standard high‑salt 

methods, while PCR reactions were performed using prim‑
ers designed to amplify a 600 bp long region of the 18S 
rRNA gene of haemogregarines, HepF300 and HepR900, 
following Maia et al. (2012). The amplified products were 
purified and sequenced by an external company (Genewiz, 
UK). Sequences were compared to the GenBank database 
using a BLAST search to confirm the identity of the ampli‑
fied products. We then conducted phylogenetic analyses 
(Bayesian Inference and Maximum Likelihood) using the 
same methodology as in Tomé et al. (2021). The final align‑
ment matrix was 579 base pairs long and included 205 par‑
tial 18S rRNA sequences from haemogregarines. Two of 
these were new sequences from this study, which are avail‑
able in the GenBank database under the accession numbers 
MZ327715 and MZ327716.

Results and discussion

Our study shows that the invasive P. siculus was less para‑
sitized than the native P. virescens, both in terms of preva‑
lence (p‑value < 0.001) and intensity of infection. In fact, 
only one individual of the invasive species was infected 
(out of 27, 3.7%) while we found 20 infected individuals 
of the native species (out of 29, 69.0%). This single P. sicu-
lus individual presented a very low intensity (0.04%, repre‑
senting only 1 parasite per 2500 erythrocytes). The mean 
intensity among infected individuals of the native species 
was 1.36% ± 2.14 SD (i.e. an average of 34 parasites per 
2500 erythrocytes), and intensity values ranged from 0.04 
to 9.88%. The prevalence and intensity levels here detected 
are congruent with results from previous studies. They are 
usually high in P. virescens, although the values can vary 
significantly across populations (e.g. Maia et al. 2014). 
Regarding P. siculus, available data in its native range (near 
Rome, Italy) shows very low intensity levels (average lower 
than 0.1%; Sacchi et al. 2011), while in populations intro‑
duced to the USA no blood parasites were detected (Burke 
et al. 2007).

All the amplified parasites were genetically identified as 
haemogregarines (within a clade considered the genus Kary-
olysus), the most common blood parasite in reptiles (Telford 
2009). We detected two different haemogregarine haplotypes 
that differed by 2.6% (15 nucleotides out of 572 bp align‑
ment) infecting the native lizard species (referred here as 
A and B, see Fig. 1a for the phylogenetic tree). These were 
identical to haplotypes infecting other Podarcis species of 
the Iberian Peninsula and Morocco, including P. hispanicus 
and P. bocagei. Due to the low intensity, it was not possible 
to retrieve sequences for all infections, including the single 
P. siculus individual infected. However, morphologically 
it resembled haemogregarines bearing haplotype A (pho‑
tographs of gametocytes infecting erythrocytes available 
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in Fig. 1b for haplotype A, Fig. 1c for haplotype B, and 
Fig. 1d for the infection in P. siculus). Because there are 
no comparable genetic sequences available for haemogre‑
garines infecting P. siculus, from either native or introduced 
populations, it was not possible to determine the identity 
and closest relatives of the haemogregarines infecting P. 
siculus and confirm if there was any haemogregarine inter‑
change between the two host species. Nevertheless, several 
haemogregarine haplotypes that infect lizards in the Iberian 
Peninsula are shared across lacertid species (Harris et al. 
2012; Maia et al. 2012, 2014), which suggest that these para‑
sites are not species specific, and so they may potentially 
infect P. siculus.

Despite living in the same urban habitat and sharing simi‑
lar resources, P. virescens and P. siculus clearly differed in 
parasite infection levels. Unfortunately, with the current 
information, we cannot assess whether the haemogregarines 
infecting P. siculus are parasites brought from the source 
populations, or whether they have been transferred by the 
sympatric P. virescens. The introduced P. siculus popula‑
tion in Lisbon has its origin in Tuscany, Italy (Silva‑Rocha 
et al. 2012), where interestingly it also exhibited low para‑
site levels (Sacchi et al. 2011). Potentially, there could be 
some mechanism limiting haemogregarine spread from the 
native to the introduced lizard species. Such barriers may 
include spatial segregation between the two host species, 
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Fig. 1  Phylogenetic tree and photographs of gametocytes of the 
haemogregarines found in this study. (a) Tree derived from the 
Bayesian Inference analysis of haemogregarine 18S rRNA gene 
sequences. Bayesian posterior probabilities are given above relevant 
nodes and below are the bootstrap values from the Maximum Likeli‑

hood analysis (only values over 70 are shown). New sequences from 
this study are identified in bold and larger font size. For simplic‑
ity, some branches of the phylogenetic tree have been collapsed. (b) 
Gametocytes found in P. virescens of haplotype A and (c) haplotype 
B. (d) Gametocyte from the only P. siculus infected individual
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immunological differences, or transmission vector affinity 
towards a specific host species (Poulin 2017). It is unlikely 
that spatial segregation promotes differences in parasite 
infection given it would occur across a micro‑scale and 
that the two host species can punctually overlap in Lisbon 
(Ribeiro and Sá‑Sousa 2018). On the other hand, immu‑
nological differences between the two species might be 
supported by the low parasite intensity in P. siculus, both 
in Lisbon and in Tuscany. Likewise, vectors may also help 
explain our results. Because haemogregarines need a multi‑
ple host lifecycle, it can complicate parasite establishment, 
as a suitable vector (in this case ticks or mites) also needs to 
be present in the introduced location (Poulin 2017). Never‑
theless, as we found one parasite in one P. siculus individual, 
and because different host lacertid species can share parasite 
haplotypes (Harris et al. 2012; Maia et al. 2012, 2014), there 
should be little obstacle for transmission to P. siculus.

Another aspect that needs further investigation is the 
effect of the haemogregarines on lizard hosts. Haemogre‑
garine infections can cause changes in basking behaviour, 
metabolism, and reproductive effort, and even anaemia 
and mortality (see Telford 2009). Conversely, studies on 
flight escape distance (an indicator of antipredator behav‑
iour) found no correlation with haemogregarine infection 
loads (e.g. Damas‑Moreira et al. 2014). Overall, the gen‑
eral picture of low infections by parasites in P. siculus and 
the possible negative effects of haemogregarines suggest 
enemy release might indeed provide this lizard with some 
competitive advantage over infected native populations. Or 
alternatively, infection in P. virescens might give the native 
species a competition handicap that enabled P. siculus to 
establish and persist at least locally. For example, in another 
congener lizard pair on the Caribbean island of St. Maarten, 
Anolis gingivinus and Anolis wattsi only co‑occur in loca‑
tions where the former is heavily parasitized by Plasmodium 
azurophilum, while throughout the island A. gingivinus out‑
competes A. wattsi (which is rarely infected). This pattern 
is observed even within distances of only a few hundred 
meters. The malaria parasite was suggested to mediate com‑
petition between the two lizards, allowing the competitively 
inferior lizard to coexist (Schall, 1992), although a later 
study (Perkins, 2001) found the two species of anoles still 
cohabited despite no P. azurophilum infections being identi‑
fied. This suggests that either the parasite was not playing a 
role, or that its effect on competition plays out over a longer 
timeframe.

Furthermore, several other traits can explain P. siculus’s 
colonization success, including versatile diet and habitat 
choice, and adaptable behaviour and morphology (e.g. Ver‑
vust et al. 2007; Damas‑Moreira et al. 2019, 2020). Future 
studies should focus on identifying the haemogregarines 
infecting P. siculus in its native and introduced ranges, on 
understanding the effect of haemogregarines on host fitness, 

and on monitoring the long‑term fluctuations of parasite 
infections in these and other similar species pairs. Although 
the particular role of haemogregarines in the introduction 
success of P. siculus is still not clear, host‑parasite dynamics 
can undoubtedly be a crucial factor in both the success of an 
introduction and the impact on native communities.
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