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Abstract
The release of contaminants as herbicides, fungicides and insecticides into the environment has been listed as one of the six
major contributors to the global decline of reptiles. Although reptiles may face severe risk from contaminants due to their
ecology and physiology, they are currently less studied than other vertebrate groups. In the present work, we investigated if
and how different types of field treatment (conventional and organic) affected the health status of Italian wall lizard
(Podarcis siculus) individuals in central Italy. We chose a multi-biomarker approach that evaluated the biological responses
of lizards to the treatment by means of AChE activity in the nervous system, biotransformation enzymes activities and
oxidative stress in the liver, micronuclei frequency measured in the erythrocytes, and rate of intestinal parasitic infection.
Our findings showed evidence of effects of treatment in conventional areas and between sexes with significant oxidative
stress due to hydroxyl radicals, that caused DNA damage. No difference of intestinal parasite infections was found among
treatments. Podarcis siculus seems to be a good bioindicator in ecotoxicological studies and potentially in risk assessment of
pesticides, although further analyses in laboratory and in the field are needed to achieve more accurate quantification of
specific pesticide effects in relation to known exposure history and to understand if other mechanisms were involved in the
toxicity and detoxification process of pesticides for this species.
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Introduction

The intensive release of pesticides as insecticides, her-
bicides and fungicides in the modern agriculture has been
listed as one of the major contributor to the global decline
of reptiles (Gibbons et al. 2000; Todd et al. 2010; Mingo
et al. 2017). Some reptiles species, especially lacertid
lizards, are abundantly widespread in agricultural areas
(Wisler et al. 2008; Freedberg et al. 2011, Bicho et al.
2013) where they often occur at high densities and

biomass levels (Pough 1980). Reptiles, as non-target
organisms for pesticides, can be directly and indirectly
exposed to these contaminants through various routes,
including (a) inhalation (Doya et al. 2020), (b) absorption
from the skin (Weir et al. 2016; Mestre et al. 2019), (c)
ingestion of contaminated food or soil (Mingo et al. 2017;
Verderame and Scudiero 2019), (d) maternal transfer to
eggs/ young (Weir et al. 2010, 2015), (e) absorption by
eggs of contaminants from surrounding environments
(Schaumburg et al. 2016), and (f) through alterations in
the availability of food or microhabitats (i.e. plant cover)
(Marco et al. 2004). The significant role of reptiles in
ecosystems has been widely established and their expo-
sure to these chemicals is proved and widespread, with
consequences ranging from hormonal changes and
enzymatic responses (i.e., oxidative stress, neurotoxic
implications and immunosuppression) to physiological
reactions like impairments in fertility, development and
locomotor performance (DuRant et al. 2007; Amaral et al.
2012a, b, c; Bicho et al. 2013; Carpenter et al. 2016;
Schaumburg et al. 2016). However, the actual effects of
pesticides on reptiles, the existence of synergistic effects,
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and the biological factors involved in the defence
response are still unclear and scarcely investigated, and
they have been mainly inferred indirectly from surrogate
species (birds, mammals and fish) (De Falco et al. 2007;
Sparling et al. 2010; Weir et al. 2010). Reptiles remain
the only vertebrates (along with amphibians) not directly
considered in the environmental risk assessment (ERA) of
pesticides. Only recently, the European Food Safety
Authority highlighted the need for timely actions to fill
such considerable gap of knowledge (EFSA et al. 2018).

Pesticides are known to primarily act on both target and
non-target organisms through biochemical and molecular
processes (Amiard-Triquet et al. 2012). However, they can
propagate through higher levels of biological organization
(cells, tissues and organs) producing cascading con-
sequences on organisms and populations (Fossi and Leon-
zio 1993). Given this complex scenario characterized by a
suite of possible effects involving different processes and
scales, preliminary studies suggested to approach the ana-
lysis of pesticide impact on reptiles by combining the use of
different cellular and molecular biomarkers in order to
detect early-warning signals of contaminant exposure or
effect, together with analysis at organism level such as body
condition or intestinal parasitic infection (Livingstone 1993;
Capriglione et al. 2011).

The main goal of the present study is to assess the effects
of some pesticides exposure (thiophanate methyl TM,
tebuconazole, lambda-cyhalothrin and deltamethrin) and
other contaminants commonly used in hazelnut manage-
ment activities on Podarcis siculus (Rafinesque-Schmaltz
1810) in Central Italy by means of multi biomarker
approach. The set of biomarkers selected for this study
involves acetylcholinesterase, glutathione-S- transferases
activities, TOSC Assay and frequency of micronuclei.

Fungicides, such as tebuconazole, and pyrethroid insec-
ticides, such as lambda-cyhalothrin and deltamethrin (and/
or their metabolites) are known to inhibit the activity of
acetylcholinesterase (AChE), to induce oxidative stress and
to stimulate some detoxification processes in vertebrates,
especially fishes (i.e., Danio rerio) (Altenhofen et al. 2017;
Ullah et al. 2019). The fungicide TM, in general, has a
lower toxicity compared with other common fungicides,
however it and its derived products have been classified by
U.S. EPA as probable human carcinogens (Capriglione
et al. 2011). Even if data on the toxicity of TM are con-
flicting (Capriglione et al. 2011), it resulted to be genotoxic
especially for humans and rats (Ben Amara et al. 2014). In
this study, due the presence of mixed pesticides, including
pyrethroid and ester carbamate, we hypothesized to find
higher neurotoxic effect (i.e. inhibition of AChE) and
alteration of the antioxidant system (measured by TOSC
Assay towards peroxyl and hydroxyl radicals - TOSCA
ROO. TOSCA HO.) in lizards from conventional fields than

in organic or control fields. We also expected activation of
detoxification systems (i.e. GSTs) and cellular damages at
DNA level (MN test). Moreover, we expected that pesticide
exposure (i) by weakening the animals, increases the impact
(i.e. abundance) of intestinal parasites of lizards from con-
ventional fields; or (ii) directly affects the parasites,
decreasing their prevalence within individuals of exposed
sites. The Italian wall lizard was chosen as model species
for its wide distribution in agricultural habitats (Bologna
et al. 2000; Maura et al. 2011) due to its generalist habit
(Corti et al. 2009) and dispersal ability (Vignoli et al. 2012).
Moreover, the use of this lizard as a terrestrial bioindicator
for ecotoxicological assessment of the impact of pollutants
has been proposed and validated in different studies,
focusing especially on endocrine dysfunction, impairments
in fertility and reproduction success (De Falco et al. 2007;
Sciarrillo et al. 2008; Marsili et al. 2009; Cardone 2015;
Guerriero et al. 2018; Verderame and Scudiero 2019).
Preliminary studies on effects of pesticides in similar spe-
cies such as P. muralis (Laurenti 1768) and P. bocagei
(Lopez-Seoane 1885), both in field and lab, suggested
alterations in morphology, condition index, fertility,
detoxicant and antioxidant systems, DNA (Amaral et al.
2012a; Capriglione et al. 2011; Cardone 2015; Mingo et al.
2016, 2017), although most of them are related to pesticides
other than those investigated in this study (i.e. glyphosate,
chlorpyrifos).

Materials and methods

Study area

Fieldwork was carried out in five localities in Viterbo
province (Latium, central Italy; 507 m a.s.l.). This area
has been extensively used for hazelnut management
activities for more than 50 years and it is regularly being
treated with synthetic pesticides and natural occurring
pesticides as copper sulphate in order to control pests
throughout the years (Carbone et al. 2004; Fabi and
Varvaro 2010; Roversi 2016). The current and historical
land and pesticide usage were obtained through con-
sultation with the landowners. Study sites were all
hazelnut cultivations and included (i) two conventional
farming areas (T1, 42°21'26.20“N 12°16'11.55“E; T2, 42°
20'43.72“N 12°24'5.80“E) where fungicides and insecti-
cides have been applied routinely twice a years from May
to July, (ii) two organic farming areas (B1, 42°21'45.53“N
12°15'36.86“E; B2, 42°26'24.70“N 12°18'46.30“E),
where copper sulphate have been used once a year, and
(iii) one control area (C, 42°19'38.7“N 12°02'52.3“E)
pesticide free, with no history of chemical application for
at least 10 years also in the neighbouring agricultural
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fields, surrounded by wild oak forest and sufficiently
distant from conventional fields to discharge any effect of
possible pollutants used in the surroundings (Table 1). In
these environment, Italian wall lizards exploit the hazelnut
roots, trunks, and low branches as well as the surround-
ings natural dry vegetation as the main habitat elements
(e.g. for thermoregulation, foraging, as hiding place or
even as deposition site). All the selected fields had similar
geology, soil types and climate, and they were separated
by at least 1-2 km, so that the interchange of individuals
was considered unlikely in the short term.

Lizard sampling and lab design

Sampling activity took place from June to July 2018. Seven
days from pesticide application (Table 1 “Appendix”), adult
lizards were captured by noose or hand, sexed using sexual
secondary characters (Arnold and Ovenden 2002), mea-
sured for body mass (BM) (Digital scale, DIPSE TP 2000,
precision 0.1 g), for snout-vent length (SVL) with a calliper
(precision 0.01 mm) and transported to the Italian Institute
for Environmental Protection and Research (ISPRA)
laboratories (Castel Romano, Latium, central Italy) where
they were killed by cervical dislocation and dissected
(Amaral et al. 2012a). Brain, liver, blood, and gastro-
intestinal tract were removed, weighted, and used for the
biomarker analyses. Brain and liver were frozen in liquid
nitrogen and kept at −80 °C, while the digestive tract was
preserved in 96 % ethanol. Blood samples were gathered
from the caudal tail vein using a heparinised needle, fixed in
Carnoy’s solution (methanol: acetic acid= 3:1) and stored
at 4 °C.

Studied biomarkers

The acetylcholinesterase (AChE) and glutathione-S-
transferases (GSTs) activities are well established and

suitable biomarkers for pesticides exposure in lacertid
lizards (Mingo et al. 2017).

The AChE is an enzyme with a fast activity that catalyses
the breakdown of acetylcholine and other choline esters that
function as neurotransmitters (Quinn 1987). Since it is the
primary target of inhibition by organophosphorus, carba-
mate and pyrethroid compounds (Tougu 2001), it has been
commonly used to assess neurotoxic pesticide effects on
organisms (Day and Scott 1990).

The GSTs, a family of phase II metabolic enzymes,
catalyse the conjugation of the reduced form of glutathione
(GSH) to xenobiotic substrates having electrophilic centres
(nitrocompounds, organophosphates, organochlorines),
making them more water-soluble facilitating their excretion.
These enzymes exist in multiple forms and their activities
have been also associated with resistance to the major
classes of pesticides since they can be altered by a wide
range of them (Domingues et al. 2010; Mingo et al. 2017).

Oxidative stress quantification and the frequency of
micronuclei (MN) could be considered as widespread gen-
eral biomarkers useful to evaluate the activation of the
antioxidant system and the genotoxicity respectively, due to
exposure to contaminants or mixture of them. The TOSC
(Total Oxyradical Scavenging Capacity) Assay allows to
quantify the capacity of the entire antioxidant system to
neutralize the different forms of reactive oxygen species
(ROS), which can cause damage to lipids, DNA and pro-
teins if not kept under control.

Regarding the MN, their occurrence is an irreversible
genotoxic event that reflects an accumulation of DNA
breakages during cell cycle processes (Gorbi et al. 2009;
Bolognesi and Fenech 2012). The micronucleus test is
frequently used to evaluate the genotoxicity of contaminants
due to its simplicity, reliability and sensitivity (Ayllon and
Garcia-Vazquez 2000) in vertebrates (Çelik et al. 2005;
Lajmanovich et al. 2005; Hui Yin et al. 2008; Hussain et al.
2012) and invertebrate species (Bolognesi and Fenech
2012), and rarely applied in reptiles (mainly turtles and

Table 1 Applied chemicals and
their application rates (field
dose, kg-L/ha) in the sampling
sites during the year 2018

Treatment Area ha Chemical Active ingredient Kg-L/ha Type

Conventional T1 2 Ares 430sc® Tebuconazole 0.20 Fungicide

Sparviero® Lambda-cyhalothrin 0.20 Insecticide

T2 4 Ares 430sc® Tebuconazole 0.50 Fungicide

Copper 40% Copper sulphate 3 Herbicide/bactericide/fungicide

Sparviero® Lambda-cyhalothrin 0.25 Insecticide

Enovit® Thiophanate-methyl 1.7 Fungicide

Glorial 25ec® Deltamethrin 0.5 Insecticide

Organic B1 2.5 Copper Copper sulphate 2.2 Herbicide/bactericide/fungicide

B2 2 Copper Copper sulphate 2.2 Herbicide/bactericide/fungicide

Control C 3 – – –

ha area surface in hectare
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crocodiles) (Poletta et al. 2009; Strunjak-Perovic et al.
2010; Poletta et al. 2011).

Biomarkers assays

AChE activity was measured in supernatant (S10) brain
cytosolic fractions, while total antioxidant capacity and
GSTs activities were measured in S10 liver cytosolic frac-
tions after homogenization (1:10, w/v) in 100 mM Tris–HCl
buffer, 0.25 M sucrose and 1 mM EDTA (pH= 7.6) cen-
trifuging at 10,000 g for 20 min at 4 °C (Amaral et al.
2012a). All the analyses were performed using the obtained
supernatant preserved at −80 °C. AChE activity was
determined spectrophotometrically in the brain following
Ellman et al. (1961) slightly modified. The reaction medium
was 50 mM Na-phosphate buffer (pH 7.4) and acet-
ylthiocholine iodide (0.5 mM) as substrate. This latter is
converted in thiocholine reacting with 5,5-dithio-bis-2-
nitrobenzoic acid (0.2 mM DTNB). The activity was
detected by recording the rate of absorbance at 412 nm and
18 °C during a 1-min period with a
CARY50 spectrophotometer. The activity was normalized
by total protein concentration (Lowry et al. 1951) and
expressed as nmol/min/mg protein, using a molar extinction
coefficient (ε) of 13.6 mM−1cm−1.

Glutathione S-transferase kinetic was determined spec-
trophotometrically (λ= 340 nm, at constant temperature
18 °C) with the method described in Habig et al. (1974),
slightly modified by Regoli et al. (2012). The reaction
medium was 100 mM K-phosphate buffer (pH= 6.5) with
1.5 mM reduced glutathione (GSH), 1.5 mM 1-chloro-2,4-
dinitrobenzene (CDNB) as substrate and the cytosolic
extract of the liver sample. The activities were normalized
with total protein content (Lowry et al. 1951) and expressed
as μmoli/min/mg protein.

TOSCA ROO.–TOSCA HO. were detected according
to Regoli and Winston (1999). The assay is based on the
reaction between peroxyl and hydroxyl radicals artifi-
cially generated (at a constant rate) with the substrate α-
keto-γ-methiolbutyric acid (KMBA) which is gradually
oxidized to ethylene. The formation over time of ethylene
was monitored by gas chromatography. The total anti-
oxidant capacity (TOSC) of a sample against free radicals
is quantified by its capability to inhibit ethylene formation
compared to a control reaction. Indeed, the efficiency of
cellular antioxidants as scavengers of the radicals pro-
duced is ground on their ability to reduce the reaction
between free radicals and KMBA. Peroxyl radicals were
generated by thermal homolysis of 20 mM 2-2’-azo-bis-
(2methylpropionamidine)-dihydrochloride (ABAP) in
100 mM K-phosphate buffer (pH 7.4) and 0,2 mM
KMBA. Hydroxyl radicals were produced through Fenton
reaction at 35 °C of iron-EDTA (Fe3+ 0.18 µM / EDTA)

and ascorbic acid. The final test conditions were: KMBA
(0.2 mM), ascorbic acid (0.18 mM), Fe3+ (0.18 µM) and
EDTA (0.36 µM) in K-phosphate buffer (100 mM) a pH
7.4. Both reactions were carried out in a final volume of
1 ml at 35 °C, in 10-ml vials sealed with gas-tight Mini-
nert valves for multiple injections. Ethylene production
was analysed by measuring 200 µl aliquots of headspace
of the reaction vials at 15 min intervals with a gas chro-
matograph (HFC500) and a flame ionization detector
(FID). The oven, injection, and FID temperatures were
respectively, 35, 160, and 220 °C. Helium was the carrier
gas. The TOSCA value of each sample was expressed in
equivalents of GSH/gr of tissue, calculated using a cali-
bration curve having as standard the TOSC values of
three known GSH concentrations and normalized per gr
of tissue.

Micronucleus (MN) frequencies were measured follow-
ing Gorbi et al. (2009). Blood samples were exposed to
fixative solution changes before setting up blood smears
coloured with ethidium bromide (2 μg/ml). At least 1000
cells for each sample were examined under a fluorescence
microscope to determine the percentage of cells containing
MN on total cells.

Parasite analyses

Even if less exploited, pesticides effects on parasite infec-
tions can be useful tools to evaluate the vulnerability of
reptiles to environmental contaminants (Hopkins 2000;
Marcogliese 2005). Organisms already affected by different
environmental stresses seem to be more susceptible to
infection by parasites (Marcogliese 2005). Changes in
parasite load and composition represent a good bioindicator
of environmental stress. The consequences of parasite
infection and contamination have been deeply studied in
birds (Mandal et al. 1986) and amphibians (Mann et al.
2009; King et al. 2010), but infrequently in reptiles (Amaral
et al. 2012a; Soliman 2012).

Stomach, small and large intestine were rinsed with dis-
tilled water, opened and their contents examined for parasites
utilizing a stereo microscope. Parasites were isolated and
fixed in 96% ethanol. Helminths were identified to the lowest
possible taxon (usually species). Parasite prevalence and
mean abundance were calculated following Bush et al.
(1997). Shannon’s diversity index was used to evaluate
parasite community structure. This index refers to the relative
frequency of each individual species detected in the sample
area. Typical values in ecological studies are generally
between 1.5 and 3.5, and the index is rarely greater than 4.
The Shannon index increases as both the richness and the
evenness of the community increase. Differences in parasites
species richness and diversity among treatments were tested
by rarefaction.
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Data analyses

To estimate the body condition (BC), the scaled mass index
was calculated as described by Peig and Green (2009), since
it represents an improvement over existing condition indices
based on mass and length data (Peig and Green 2010). An
analysis of variance (ANOVA) was used to detect differ-
ences between individuals from different treatment man-
agement, with BC as dependent variable, treatment
(conventional, organic and control) and population ID
(nested within treatment) as the independent variables. As
the study species displays a sexual dimorphism affecting
different body proportions (Schulte 2008), and females’
body condition could be influenced by their reproductive
status, individuals were divided according to gender, and
only males were analysed.

For each biomarker, the different responses obtained
were examined using three-way mixed model ANCOVA
designs with sex, treatment (conventional, organic and
control), population ID (nested within treatment) as inde-
pendent factors, BC as covariate, and the biomarker outputs
as the response variables. All interaction effects were also
included. When necessary, data were log-transformed to
meet normality. Tukey’s post hoc test was applied to assess
the significance of differences between pairs of
group means.

Since in this species the body size differs between sexes
with males being significantly larger than females, we
analysed the difference of parasite load between sex and
then we made a correlation between parasite load and SVL
of females and males separately. Furthermore, based on
infectious status, lizards were grouped into two categories,
(uninfected/infected), to determine if the biomarkers could
be affected by lizard infection status, different treatments
types and/or their combinations (Marcogliese et al. 2009).
We performed an ANOVA where infection status and
treatment were considered as independent factors. Since
each of the five considered biomarker were analysed

separately, a sequential Bonferroni correction was used to
account for multiple testing. Kruskal-Wallis test was
applied to test differences of parasites prevalence and
abundance.

Statistical analyses were performed by using Statistica
(v8.0; StatSoft Inc 2007) and PAST v3.0 (Hammer et al.
2001) with alpha set at 0.05.

Results

Body condition

Overall, 80 adult lizards were captured. No significant dif-
ferences in BC were observed across treatments (ANOVA,
F= 1.08, p= 0.35) (Table 2 “Appendix”).

Biomarkers analysis

Mean values (±standard deviation) of biochemical
responses analysed in P. siculus tissues are shown in
Table 2. No significant effect in inhibition of AChE, GSTs
activity and in total antioxidant capacity towards peroxyl
radicals (TOSCA ROO.) among treatment and populations
or sex was observed (Table 3). TOSCA HO. differed
among treatments, with lizard from conventional field
showing a higher oxidative stress by hydroxyl radicals
than control and organic, and between sexes, with males
presenting higher oxidative stress also by hydroxyl radi-
cals than females (Table 3). T2 population showed the
highest total antioxidant capacity (Post hoc Tukey’s test p
< 0.05). As for MN test, lizards collected in con-
ventionally treated fields showed a significant higher
erythrocyte micronucleus frequency (especially in the T2
population) than lizards collected elsewhere (p < 0.05).
No significant difference was found between organic and
control farming fields (Post hoc Tukey’s test p ≥ 0.40)
(Table 3)

Table 2 Mean values ± standard deviations of biomarker responses in P. siculus in conventional (T1 and T2), organic (B1 and B2) and control
(C) sites

Conventional Organic Control

Biomarkers T1 T2 B1 B2 C

AChE (nmol/min/mg protein) 30.38 ± 12.72 34.80 ± 13.10 33.90 ± 12.36 32.51 ± 8.19 30.71 ± 10.15

GSTs (μmol/min/mg protein) 526.80 ± 160.29 517.20 ± 184.80 603.80 ± 222.42 618.30 ± 288.79 651.70 ± 215.90

TOSCA ROO. (GSHeq/g tissue) 870.6 ± 247.0 824.8 ± 237.0 750.2 ± 142.7 932.9 ± 232.9 808.9 ± 286.8

TOSCA HO. (GSHeq/g tissue) 1568.8 ± 365.3 2399.4 ± 386.0 1738.2 ± 261.6 1741.2 ± 360.9 1817.3 ± 461.7

MN (‰) 1.4 ± 0.4a 2.4 ± 0.3a 0.7 ± 0.3a 1.2 ± 0.3a 0.8 ± 0.2a

AChE acetylcholinesterase, GSTs glutathione S-transferases, TOSCA total oxyradical scavenging capacity assay towards peroxyl (ROO.) and
hydroxyl (HO.) radicals, MN micronuclei frequency
astandard error

Biological responses in pesticide exposed lizards (Podarcis siculus) 1021



Parasite analyses

Overall, four helminth parasite species were identified: the
nematodes Spauligodon sp. Skrajabin, Schikhobalova, and
Lagodovskaja 1960 and Skrjabinelazia sp. Sypliaxon 1930,
the cestodes Nematotaenia tarentolae Lopez-Neyra 1944, and
larval forms of Mesocestoides litteratus (Batsch 1786). The
total number of identified species per lizard varied between 1
and 3, with prevalence values ranging from 2.9 to 57%, while
mean abundance was 0.03–1.76 worms per individual (Table
4). Only Spauligodon sp. was found in all the treatments and
it was numerically dominant representing 100, 98 and 50 %
of all parasites found in organisms from conventional, organic
and control areas, respectively. Parasite’s prevalence and
mean abundance did not differ significantly when treatments
were compared (prevalence, Kruskal–Wallis H2,5= 1.40 p=
0.50; mean abundance, H2,5= 0.60 p= 0.74). Females
showed a higher parasite load than males (Mann–Whitney U
Test, U= 590, p= 0.04). However no correlation between
SVL and parasite load was found in each treatment and in
their total both in females (RSpearman ≤ 0.06, p ≥ 0.22) and
males (RSpearman ≤ 0.18, p ≥ 0). No effect of infection level
(alone or as interaction with treatments) on the biomarkers
analysed in the study was observed. Only MN responded to
treatments alone besides of infection status with a higher
presence of MN in conventional fields (Post hoc Tukey’s test,
p < 0.001) (Table 3 “Appendix”).

Discussion

This study represents a preliminary investigation on health
of lacertid lizard exposed to a mix of pesticides in agri-
cultural environments in Central Italy.

Body condition is a morphological stress index, provid-
ing useful information about physiological status and gen-
eral health status of an organism (Stevenson and Woods
2006). Indeed, the decrease of body condition can have
important consequences for an individual’s fitness, includ-
ing capacity to survive hibernation, ability to compete for
breeding opportunities, fecundity, and capacity to fight
disease (Amo et al. 2006, 2007; Pafilis et al. 2009). How-
ever, no clear demonstration of a direct link between toxic
effects from pesticide exposure and body condition in rep-
tiles has been provided yet. To our knowledge, only few
studies reported a decrease in body condition index in
lizards P. muralis and P. bocagei inhabiting agricultural
areas exposed to pesticides (Amaral et al. 2012b; Mingo
et al. 2017). Further analyses will be necessary to better
disentangle these issues.

Regarding the biomarker analysis, no inhibition of AChE
activity and alteration of GSTs were detected in lizards after
pesticide application, when compared among treatments

Table 3 Effects of treatment (conventional vs organic vs control),
population (nested within treatment), sex, and all 2 * 2 interaction
effects on biomarkers values in P. siculus

Biomarker df F p

AChE

Intercept 1 92.50 <0.0001

BC 1 0.60 0.442

Treatment 2 0.11 0.892

Population (treatment) 2 0.14 0.865

Sex 1 1.15 0.288

Treatment*sex 2 0.91 0.406

Population (treatment)*sex 2 2.61 0.081

Error 62

GSTs

Intercept 1 273.64 <0.0001

BC 1 1.55 0.217

Treatment 2 1.93 0.153

Population (treatment) 2 0.09 0.915

Sex 1 2.49 0.119

Treatment*sex 2 1.06 0.354

Population (treatment)*sex 2 0.86 0.428

Error 64

TOSCA ROO

Intercept 1 19.35 <0.0001

BC 1 0.67 0.415

Treatment 2 0.44 0.648

Population (treatment) 2 1.68 0.196

Sex 1 1.22 0.273

Treatment*sex 2 0.22 0.788

Population (treatment)*sex 2 0.06 0.942

Error 61

TOSCA HO.

Intercept 1 21.70 <0.0001

BC 1 2.44 0.128

Treatment 2 4.66 0.025

Population (treatment) 2 1.28 0.305

Sex 1 14.28 0.002

Treatment*sex 2 0.25 0.780

Population (treatment)*sex 2 0.76 0.482

Error 16

MN

Intercept 1 4.42 <0.0001

BC 1 0.56 0.455

Treatment 2 9.71 <0.0001

Population (treatment) 2 2.14 0.127

Sex 1 1.20 0.277

Treatment*sex 2 0.07 0.931

Population(treatment)*sex 2 0.86 0.430

Error 62

Significant values are reported in bold
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and populations. This implies that (i) the pesticides involved
in this study may not be neurotoxic and may not be
detoxified by GSTs activities; (ii) the studied lizards may
have developed a fast enzyme recovery activity from
intoxication (Mingo et al. 2016) or a tolerance capacity
toward those contaminants to which they have been
chronically exposed; (iii) the pesticides concentrations were
not high-enough to cause an effect on the measured end-
points; (iv) sampling events took place too late compared to
pesticides application date in order to detect fast molecular
biomarkers reactions (i.e., GST, AChE) (Mingo et al. 2016).
Further studies therefore are needed to clarify if there is a
neurotoxicity involving other esterase (i.e. butyryl choli-
nesterase), and which pathway is involved in pesticides
detoxification processes (either using a different kind of
biomarkers such as those of phase I metabolizing enzyme
system such as cytochrome p450 enzymes activities)
through exposure studies with different pesticides con-
centrations and under controlled condition.

Oxidative stress, evaluated in terms of total antioxidant
capacity (TOSC) against specific free radicals, was induced
in the study lizards. A significant response of TOSCA HO.

values was detected among treatments, especially in one
conventional field (i.e., T2). This suggests that lizards
considered in this study have promptly activated the anti-
oxidant system to counteract ROS formation due to syn-
thetic pesticide exposure and that the oxidative stress should
be ascribed to hydroxyl radicals rather than to peroxyl ones.
In order to better clarify this mechanism of action, indivi-
dual components of the antioxidant system, such as catalase
(CAT) and glutathione peroxidase (GPx) activities, could be
analysed. Indeed, these enzymes are both involved in
detoxification of hydrogen peroxide which is an important
precursor to hydroxyl radicals (Di Giulio et al. 1995).
Concerning possible intersexual differences as response to
pesticide exposure, we found higher antioxidant levels in
males than in females, as already observed in the Croco-
dylus niloticus, Laurenti 1768 (Arukwe et al. 2015). Sexes
can be subject to distinctive chemical effects because of

different pathways of exposure, uptake, and metabolism.
Moreover, irrespectively of the presence of xenobiotic
substances, also stresses arising from predation risk and
territoriality are known to induce oxidative stress (Pinya
et al. 2016). In P. siculus, males are bigger and heavier than
females and are characterized by aggressive territorial
behaviour (Corti et al. 2011). This may suggest that males
are more likely exposed to different contaminants or more
prone to increased oxidative stress than females, because of
their higher activity levels in searching for food and
patrolling their territory. However, how the effects of che-
micals could be altered by gender susceptibility is still a
novel research field with available data on few reptiles
species (i.e., Alligator mississippiensis (Daudin, 1801);
Trachemys scripta (Thunberg in Schoepff, 1792)) (Burger
et al. 2007).

The production of free radicals in exposed lizards has
probably exceeded the defence of the antioxidant system
leading to DNA damages. These damages are underlined by
a higher micronuclei frequency, recorded in red blood cells
of lizards from conventional areas compared to the
remaining fields, especially in the T2 field where the thio-
phanate methyl was also used. These results agree with
Capriglione et al. (2011) documenting the occurrence of
genotoxic effects in P. siculus exposed to thiophanate
methyl fungicide. The genotoxicity is particularly relevant
because of the delayed appearance (months or years) of
fully manifested genotoxic effects (i.e. malignant tumours,
decreased reproductive success and altered genotypic
diversity) which may be significant at population and
community levels (Gardner and Oberdorster 2016). Differ-
ences in responses of animals by the two conventional areas
may be due to the different pesticide administration: while
lizards in T2 field were exposed to four different chemicals,
just two were applied in T1 with lower concentration dose
than T2 (Table 1). Thus, one possible explanation could be
that treatment with tebuconazole and lambda-cyhalothrin, as
in T1, does not induce measurable toxicological outcomes
in our lizards; instead, treatment with tebuconazole together

Table 4 Community
composition, prevalence (P%)
and mean abundance (MA) (SE
in parenthesis) of helminths
observed in P. siculus in
conventional, organic and
control sites

Conventional Organic Control

No. of species 1 3 2

Shannon–Weiner index 0 0.6 0.69

Helminth species P% MA P% MA P% MA

Nematodes

Spaulingodon sp. 31 1.76 (0.99) 57 3.11 (1.22) 13 0.31 (0.25)

Skrjabinelazia sp. – – – – 19 0.31 (0.25)

Cestodes

Nematotenia tarentola – – 2.9 0.03 (0.02) – –

Mesocestoides litteratus – – 2.9 0.03 (0.02) – –

Number (No) of parasite species and Shannon–Wiener diversity index are also shown
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with lambda-cyhalothrin, thiophanate-methyl and deltame-
thrin, as in T2, at higher concentration than T1, induces
measurable toxicity. Since no differences were found
between control and organic farming areas, we could
hypothesize that the exposure to copper sulphate, in the
amount and frequency applied in the organic farms here
investigated does not induce toxicity in lizards analysed in
this study. In order to potentially detect copper/heavy
metals in organs and tissues as long-term effects, further
studies may investigate copper bioaccumulation rate by
spectrometric analyses (e.g. GC/MS, LC/MS or AAS)
(Oyekunle et al. 2012; Sparling 2016).

Several studies have documented how some pesticides
(or a mixture of pesticides) can compromise immune sys-
tems inhibiting critical enzymes or damaging immune
organs of invertebrates (i.e., earthworms Eisenia andrei)
and vertebrates (i.e., bird Phasianus colchicus Linnaeus,
1758) (Galloway and Handy 2003), which become more
vulnerable to infections from different parasitic form as
trematodes (Kiesecker 2002; Linzey et al. 2003) and
nematodes (Christin et al. 2003, 2004; Gendron et al. 2003).
Our results are consistent with the general low rates of
parasite intestinal infection observed in lacertid lizards, P.
bocagei and P. carbonelli, Pérez-Mellado 1981 (Roca et al.
2006; Roca and Galdón 2010). Specifically, two nematode
species with a direct life cycles (Casanova et al. 2003;
Lhermitte et al. 2008; Yildirimhan et al. 2011) were found
in conventional fields, while two cestode species with a
complex life cycles (Roca and Hornero 1994; Sargsyan
et al. 2014) were detected in control and organic fields.
Similarly, a study conducted on an amphibian (the Amer-
ican bullfrog, Lithobates catesbeianus (Shaw 1802))
showed a lower species richness, a higher abundance of
direct life cycle nematodes and a lower diversity of parasite
requiring multiple-host life cycle in pesticide polluted
wetlands (King et al. 2010). It is likely that in the con-
ventional areas, pesticides affected in some way cestodes (at
different life stages) and/or their hosts (i.e., mammals, birds,
or lizards), thus decreasing the success and reproduction of
multiple-host parasites. However, we could not detect a
clear association between pesticides application and intest-
inal parasite abundance. Studies on leopard frogs (Rana
pipiens (Schreber 1782)) (Christin et al. 2003; Gendron
et al. 2003), revealed how nematode parasites (i.e., Rhab-
dias ranae) may alter the expression of biomarkers (i.e.,
lymphocyte proliferation) that are routinely used to evaluate
individual animal health in environmental studies, thus
possibly affecting their interpretations for studies in tox-
icology and conservation biology. By contrast, our study
does not provide evidence of relationship between bio-
markers and lizard infectious status, so that such con-
founding effects could be reasonably discarded.

Noteworthy, in this study, P. siculus was recorded as a new
host for the larval forms of Mesocestoides litteratus (Batsch
1786) (Berrilli and Simbula 2020). The complete life cycle
of the genus Mesocestoides Vaillant 1863, although it is not
still clear, probably requires two intermediate hosts and a
definitive one. In the second intermediate hosts (commonly
reptiles, amphibians, birds, and micro-mammals), the tet-
rathyridium stage occurs (Conn 2004; Conn and Świderski
2013) and in some cases may asexually reproduce by
spreading within the peritoneal cavity and provoking severe
systemic infections. Until now, tetrathyridia forms of
Mesocestoides were sporadically observed in Italy, infecting
domestic cats (Jabbar et al. 2012), dogs (Bonfanti et al.
2004), and a callitrichid monkey (Montalbano Di Filippo
et al. 2018). The severe infection here observed indicates
the circulation of M. litteratus in this country, with a
potential risk of infection for wild and domestic animals.
Further extensive samplings on intermediate and definitive
hosts will be needed to confirm the presence and the dis-
tribution of this parasite in the region.

In conclusion, our experimental study, combining dif-
ferent approaches, highlighted that some synthetic pesti-
cides (i.e. tebuconazole, lambda-cyhalothrin, thiophanate-
methyl, deltamethrin) may induce toxic effects in P. siculus
if used at high concentration in the same field. Moreover, it
revealed a pesticides-mixture induction of hydroxyl radicals
in lizards, that was not completely counteracted by defence
mechanisms (i.e. antioxidant system), translating into a
distinctly negative effect on lizard’s DNA, with potential
damaging outcomes in the long-term. Given that lizards in
agricultures could be exposed to pesticides with different
modalities, we suggest to perform additional field and
laboratory studies on P. siculus, testing one or more pesti-
cides at different concentrations and analysing other bio-
markers, to confirm P. siculus as a good model species in
ecotoxicological studies, to achieve a more accurate eva-
luation of specific pesticide effects, and to clarify which
defence mechanism could be activated in relation to well-
known exposure history.
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