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Phenology and temperature are the main drivers shaping the
detection probability of the common wall lizard

Mattia Falaschi∗

Abstract. Measuring the abundance of organisms is essential to provide information to ecology and biodiversity conservation.
Hardly ever, the probability of detecting an animal during a survey is near one. Overlooking this observational process can
lead to biased estimates of population size and vital rates. In this study, through Bayesian modeling, I evaluated the effects of
temperature, precipitation, wind, humidity, and phenology in determining changes in the detection probability of the common
wall lizard, for which studies on the factors determining detection probability are currently not available. Additionally, I tested
for two possible interactions: date-temperature and date-humidity, in order to assess if the relationships of these variables
with detection probability vary through the sampling season. Detection probability was highest earlier in the season (April)
and between 24 and 28 degrees. Rainfall during the survey showed a negative effect on detection probability. In contrast,
cumulative precipitation in the 24 hours before the survey showed a positive relationship, indicating that lizards are easier
to detect in surveys after rainy days. Furthermore, date and temperature showed a positive interaction, indicating that the
relationship between detectability and temperature changed over the sampling season. Date and humidity showed a negative
interaction: late in the sampling season, detectability was higher with lower humidity, however, this relationship was not found
in the early season. Future studies can consider multiple sites to evaluate the extent of variation in the drivers of detection
probability and to assess the factors related to abundance.
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Introduction

Measuring the abundance of organisms is essen-
tial to provide information to ecology and bio-
diversity conservation. While simple counts of
population size can be easy to obtain, the prob-
ability of detecting an individual during a sur-
vey is usually less than one. Imperfect detec-
tion can be the results of different factors act-
ing jointly, such as environmental conditions,
observer skill, or species traits (Mazerolle et al.,
2007; Kellner and Swihart, 2014). Not includ-
ing this observational process into models can
lead to biased estimates of population size, vital
rates such as survival probability, and of rela-
tionships with covariates driving these parame-
ters (Kéry and Schaub, 2012). Since the early
2000s, there has been a considerable increase
in methods able to include detection probabil-
ity into models and in their use (MacKenzie et
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al., 2003; Royle, 2004; Manenti et al., 2020).
However, many studies still do not consider
imperfect detection, even if this pattern can vary
across taxa (Kellner and Swihart, 2014).

Species with a cryptic behavior or a cryptic
color pattern can be particularly hard to detect,
and this is the case for many reptiles (Maze-
rolle et al., 2007; Ficetola et al., 2018, 2020).
Many factors can influence the probability of
seeing an individual during a survey. These fac-
tors can be either site-specific, such as the veg-
etation type, survey-specific, such as weather
conditions during the survey, or may depend
on individual heterogeneity, such as life-stage
or sex. For instance, the activity of ectother-
mic vertebrates can be strongly influenced by
abiotic factors such as temperature, humidity,
and precipitation (Daltry et al., 1998; Sun et
al., 2001). Another factor that can affect activity
patterns is phenology. Many species are more
active and easier to detect during the breed-
ing season, reducing activity in other periods of
the year (Braña, 1991; Zamora-Camacho et al.,
2013). If few surveys are available to assess the
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status of a species in a certain area, it is best to
carry out those surveys when the probability of
finding the target species is highest. For this rea-
son, knowing the factors that influence species’
detection probability is crucial to optimize the
monitoring of both rare and common species.

In this study, I focused on the common wall
lizard Podarcis muralis, a lacertid lizard dis-
tributed in central and southern Europe (Sillero
et al., 2014). Many aspects of the ecology and
ethology of this species have been intensively
studied, including its polymorphism, aggressive
behavior, hematology, and demography (Grac-
ceva et al., 2008; Scali et al., 2016, 2019; Pérez
i de Lanuza and Carretero, 2018; Sacchi et
al., 2020). However, so far, no study has ever
focused on the factors related to detection prob-
ability in this species, even if it is a widespread
and common reptile. For this reason, I estimated
the relative effect of several candidate drivers
of detection probability in the common wall
lizard. By performing a large number of sur-
veys at a site in northern Italy, I evaluated the
effects of temperature, precipitation, wind, and
humidity in determining changes in detection
probability. Additionally, I considered the effect
of the date of the survey to consider the phe-
nology. Furthermore, I tested for two possible
interactions: between date and temperature, and
between date and humidity, in order to assess if
the relationship between these two variables and
detectability varied over the sampling season.

Material and methods

Study area and sampling

The study was carried out in Cardano al Campo, Lombardy,
northern Italy, coordinates: 45.6367N, 8.7710E. The study
site is a residential area composed of roads, houses, private
gardens, and meadows (supplementary fig. S1). Walking
around the streets, it is easy to spot the common wall lizard,
a small lacertid lizard with a maximum snout-vent length of
∼75 mm (Biaggini et al., 2011), mating, hunting, or basking
onto the walls. I performed repeated counts of lizards within
this area by walking along a pre-defined path of ∼1.1 km
in length (supplementary fig. S1). The path was walked at
a slow speed (between 2 and 3 km/h) to allow a careful
inspection of both sides of the roads. A total of 117 surveys

were performed between 12 April and 6 October 2020, a
period covering the peak of activity of this species (Biaggini
et al., 2011). On some days, I carried out two surveys, while
in others, no survey was carried out. The average frequency
of surveys was one every 1.5 days (supplementary appendix
S1). The time of the survey ranged between 08:01 and
20:00 daylight savings time. To respect the assumption of
population closure (Royle, 2004), newly hatched individuals
(total length 5-6 cm; Biaggini et al., 2011) were excluded
from the analyses.

Environmental data

Environmental data were gathered from a weather
station of the regional agency for the protection of the envi-
ronment (https://www.arpalombardia.it/Pages/Meteorologia/
Richiesta-dati-misurati.aspx). The station is located near
the study site (station coordinates: 45.61924N, 8.75697E)
and registers weather data every 10 minutes. Temperature
and precipitation are two crucial variables shaping reptiles’
activity (Zamora-Camacho et al., 2013; Cunningham et al.,
2016). Additionally, humidity and wind can be important
determinants of activity patterns (Daltry et al., 1998; Sun
et al., 2001). Hence, for each survey, I extracted values of
mean temperature, mean humidity, mean wind speed, and
cumulative precipitation. As the duration of a survey was
25-30 min, weather data values were averaged across the 30
min timespan corresponding to the time when each survey
was carried out. Additionally, I calculated the cumulative
precipitation in the 24 hours before the survey to test for
a possible effect of rainfall on the activity of the following
day.

Statistical analyses

N-mixture models can reliably estimate population abun-
dance and detection probability of vertebrates (Ficetola et
al., 2018). However, estimating values of abundance and
detection probability is not possible with data from a single
site. Nevertheless, it is still possible to estimate the rela-
tionships between covariates and detection probability and
also to compare the relative importance of these covariates.
For this reason, in order to estimate the effect of abiotic
factors on detection probability, I used a binomial gener-
alized linear model in a Bayesian framework, specifically
written for this analysis (supplementary appendices S1 and
S2). The following covariates of detectability were included
in the model: average temperature during the survey (both
quadratic and linear terms), average humidity during the
survey, average wind speed during the survey, cumulative
precipitation during the survey, cumulative precipitation in
the 24 hours before the survey; additionally, I included the
date, expressed as Julian day, to consider the effect of phe-
nology, and two interactions: date-temperature and date-
humidity. Before running the model, I log-transformed pre-
cipitation and wind variables to reduce skewness, and then
scaled all independent variables of detection with mean of
0 and a standard deviation of 1 (Sokal and Rohlf, 2012).
Correlations among independent variables were weak (|r| <

0.57; supplementary table S1), hence I decided to keep all
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Figure 1. Density plots of the posterior distribution for the variables related to detection probability. Thick vertical lines
represent the average estimated effect for each variable, outer lines represent the 95% credible interval and shaded areas
represent the 80% credible interval. The superscript “2” indicates a quadratic relationship.

the predictors in the model. The priors of regression coeffi-
cients of the variables related to detection probability were
uniform, ranging from −10 to 10. The model was run with
three chains and for 20 000 iterations for each chain, dis-
carding the first 10 000 iterations as a burn-in. The distri-
bution of posteriors was sampled with a thinning of 10,
resulting in 1000 samples for each chain. Parameter con-
vergence was checked both visually and by looking at the
Rhat value, which was <1.01 for all parameters. Analyses
were run in the R environment (R Core Team, 2018) using
the package R2jags (Su and Yajima, 2015). A script of the
model and data used to run the analyses are available in sup-
plementary appendices S1 and S2.

Results

Over the 117 surveys, the number of detected
lizards ranged from 0 to 49 (supplementary fig.
S2). Julian day showed a negative relationship
with average detection probability (fig. 1), indi-
cating that lizards were easier to detect earlier in
the sampling season (fig. 2a). Detection proba-
bility showed a quadratic relationship with tem-
perature (fig. 1). On average, the highest detec-
tion probability was observed at 25.6°C. The

effect of precipitation showed a bimodal pat-

tern. Rainfall during the survey showed a nega-

tive relationship with detection probability (fig.

1), while rainfall in the 24 hours before the

survey showed an average positive relationship

(figs 1 and 2b). This indicates that lizards are

less detectable during rains but easier to detect

after rainy days. Humidity showed a negative

relationship with detection probability, indicat-

ing that detection probability was lower during

surveys with higher relative humidity (fig. 1).

The average effect of wind was close to zero,

with 95% CIs widely overlapping zero, sug-

gesting no effect of wind on detection proba-

bility (fig. 1). The quadratic effect of tempera-

ture showed an interaction with Julian day, indi-

cating that the temperature at which detection

probability was the highest varied over the sam-

pling season (fig. 1). For instance, in the early

season (mid-April), detection probability was

highest at 24.3°C (fig. 2c), while later in the

season (beginning of August), detection prob-
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Figure 2. Relationship between detection probability and some of the most influential variables. In each plot, the thick
colored line represents the average predicted relationship, while the thin grey lines represent 3000 samples of the posterior
distribution (1000 for each chain). a) Relationship between detection probability and Julian day; b) Relationship between
detection probability and cumulated precipitation during the 24h before the survey; The interaction between Julian day and
temperature is showed in c and d. c) Relationship between detection probability and temperature during the survey, with Julian
day fixed at 102 (mid-April); d) Relationship between detection probability and temperature during the survey, with Julian
day fixed at 214 (beginning of August). The interaction between Julian day and humidity is showed in e and f. e) Relationship
between detection probability and humidity during the survey, with Julian day fixed at 138 (mid-May); d) Relationship
between detection probability and humidity during the survey, with Julian day fixed at 214 (beginning of August).

ability was highest at 27.6°C (fig. 2d). On the

contrary, Julian day showed a negative inter-

action with humidity: the negative relationship

between humidity and detection probability was

not present in the early season (fig. 2e and

2f).

Discussion

Despite being a very common and widespread

species, so far, no study assessed the factors

driving the detection probability of the com-

mon wall lizard. In this study, through Bayesian
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modeling, I showed that the most influen-
tial drivers of the detection probability of this
species are temperature and phenology, fol-
lowed by precipitation and humidity. Tempera-
ture showed a quadratic relationship with detec-
tion probability, indicating that the activity of
the common wall lizard is highest between 25
and 28 degrees, decreasing at lower or higher
temperatures (fig. 2c and 2d). Previous stud-
ies found the body temperature of active com-
mon wall lizards around 34°C (Avery, 1978;
Braña, 1991). This is not in contrast with the
results of this study, since the common wall
lizard shows an active thermoregulatory behav-
ior, allowing individuals to reach body temper-
atures higher than the air temperature (Braña,
1991). Obtaining information about the envi-
ronmental temperatures which maximize the
probability of detecting individuals gives useful,
practical information to plan the monitoring of
this species.

The date of the survey (Julian day) showed
a strong negative relationship with detection
probability (fig. 2a). This indicates that, even
after accounting for the effect of temperature,
phenology plays a significant role in shaping
the activity patterns of the common wall lizard.
This species usually breeds between March and
June (Biaggini et al., 2011), which can explain
the higher detectability earlier in the season.
However, this relationship might change across
life stages or based on other individual charac-
ters. For instance study on aggressive behavior
showed a contrasting effect of phenology based
on lizard color morph (Coladonato et al., 2020).
The picture is further complicated by the inter-
action between date and temperature (fig. 2c and
2d). Many studies found a shift in body tem-
perature of reptiles over the sampling season
(Castilla, Van Damme, and Bauwens, 1999).
However, interactions are often not consid-
ered in models with detection probability, either
because including additional variables is data-
demanding or because it produces model con-
vergence issues. Additionally, through the usage
of cosinor models, previous studies showed a

strong effect of circadian rhythm on hemato-
logical variables and protein secretion in this
species (Mangiacotti et al., 2019; Sacchi et al.,
2020). Implementing cosinor models into N-
mixture/occupancy models could be the focus
of future research and can potentially improve
the precision of estimates of the factors related
to detection probability.

Humidity can significantly influence reptiles’
activity because of physiological constraints or
because it can be related to other biotic fac-
tors, such as prey availability (Sun et al., 2001;
Bulova, 2002). For example, some species can
prefer higher humidity to avoid the risk of
dehydration (Daltry et al., 1998), while others
might prefer lower humidity to optimize the
heat gain (Sun et al., 2001; Spence-Bailey et
al., 2010). Here we showed that adult common
wall lizards are more detectable when humidity
is low (fig. 2f). However, this relationship might
change among sexes or with age (Sannolo, Bar-
roso, and Carretero, 2018; Sannolo et al., 2020).
For instance, smaller individuals might prefer
higher humidity to avoid the risk of dehydration
due to a higher surface/volume ratio (Sannolo,
Barroso, and Carretero, 2018). Further studies
are needed to assess if there is intraspecific vari-
ation in the factors driving detection probability.
Moreover, the presence of a negative interac-
tion between date and humidity suggested that
the negative relationship between humidity and
detection probability appears only in the late
season (fig. 2e and 2f). A possible explanation
is that the preference for low humidity values is
overrun by the advantages of being more active
during breedings in the early season.

Precipitation can be a key factor influenc-
ing the activity of ectotherms (Rozen-Rechels
et al., 2019). Rainfall during the survey showed
a negative relationship with detection probabil-
ity (figs 1 and 2b), in agreement with the known
ecology of the species (Avery, 1978). However,
it has to be remarked that only three surveys
(2.5% of total surveys) were performed during
rains (supplementary appendix S1). Contrary
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to rainfall during the survey, a higher propor-
tion of surveys (35%) showed precipitation in
the previous 24 hours. Interestingly, cumulative
precipitation in the 24 hours before the survey
showed a positive relationship with detection
probability (fig. 1). This suggests that after rainy
days, the activity of this species is enhanced,
perhaps to regain the time spent inactive or
because invertebrate prey is more abundant after
rains (Williams, 1951).

In this study, I assessed the effect of abi-
otic factors on the detection probability of the
common wall lizard. Performing a large num-
ber of surveys at the same study site allowed
me to identify temperature and phenology as
the most influential drivers of detection proba-
bility, followed by precipitation and humidity.
Knowing the factors that affect the probability
of detecting an individual of a given species is
of primary importance to avoid bias in popu-
lation size and vital rates estimates (Kéry and
Schaub, 2012). Since with a single site, it is not
possible to estimate values of abundance and
detection probability, future studies can apply
this sampling method to multiple sites. Previ-
ous capture-mark-recapture studies showed that
demographic parameters of the common wall
lizard can vary widely at different sites (Grac-
ceva et al., 2008). Performing counts at multi-
ple sites would allow us to estimate population
abundance and to evaluate how microhabitat or
landscape characteristics can influence it.
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