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Abstract 

Predictive species distribution modelling is a valuable tool for decision-makers in 

biodiversity conservation, invasive species monitoring and other natural resource 

management fields. This study employs one recently proposed modelling technique – 

Maxent – to investigate the curious geographic distribution pattern of Erhard’s wall 

lizard Podarcis erhardii on Crete and surrounding islets. The main objective is to 

find out if this distribution can be explained using a set of environmental variables 

only. A secondary objective is to test the usefulness of an ASTER-derived land cover 

variable. Thirdly, the effect of replacing the single point occurrence data with 

representative ‘natural habitat’ polygons created during fieldwork in the immediate 

vicinity based on expert knowledge is investigated. 

A set of 19 environmental predictors is employed together with 75 presence-only 

records,  obtained from the National History Museum of Crete. Results are evaluated 

using the threshold-dependent True Skills Statistic (TSS), a binomial test and the 

threshold-independent ROC analysis with AUC. Relative variable importance is 

assessed based on Maxent’s built-in Jacknife functionality.  

Multi-annual NDVI is found to be the most important predictor, matching not only  

areas with high presence but also areas of apparent absence of P. erhardii.  While the 

climate variables cloud cover and actual evapotranspiration rank next, the ground 

variables altitude and CORINE land cover also contribute significantly to the overall 

‘cumulative gain’ of 1.86. The resulting distribution fits the provided occurrence 

data very well (AUC of test partition = 0.86) and results are highly significant at the 

sensitivity-specificity-equality threshold (p < 0.001).  

Western Crete serves as subset for testing the usefulness of ASTER imagery for the 

purposes of this study at regional scale. The ASTER-derived land cover variable is 

found to contribute as much unique information to the distribution as NDVI, ranks 

second in individual ‘cumulative gain’ and increases the overall ‘cumulative gain by 

over 20%. The replacement of single occurrence points with more representative plot 

data increases the ‘cumulative gain’ by an additional almost 20%, primarily because 

this allows to better exploit the discriminative power of continuous climatic variables 

with 1x1km resolution. 

The study concludes with the observation that present environmental conditions 

alone may ‘explain’ the observed curious geographic distribution of P. erhardii on 

Crete. Furthermore, it recommends the use of ASTER imagery for similar studies, 

because overlay analysis reveals not only a fairly strong association between 

ASTER, NDVI and CORINE classes preferred by P. erhardii, but also a much more 

concise identification.  



ii 

Keywords: species distribution models, presence-only, Maxent, ASTER, NDVI, 

herpetofauna, habitat suitability, Podarcis erhardii, Crete. 



iii 

Acknowledgements 

This thesis is an outcome of the BIOFRAG–ITC internal research project in 

collaboration with the National History Museum of Crete (NHMC) at the University 

of Crete, Heraklion, Greece and the International Institute for Geo-Information 

Science and Earth Observation (ITC), Enschede, The Netherlands. 

I owe special thanks to Dr. Petros Lymberakis (NHMC) for sharing his expert 

knowledge on Podarcis erhardii and introducing me to Greek cuisine, to Dr. 

Manolis Nikolakakis (NHMC) for his dedicated assistance in data acquisition and to 

Professor Dr. M. Mylonas (University of Crete) for facilitating this collaborative 

project. Without their cooperation and willingness to share data and assist in the field 

this research would not have been possible.  

 

A sincere thank you to my first supervisor Dr. Bert Toxopeus. Fieldwork with you 

was both very instructive and fun, including the scorpion encounter. I very much 

appreciated your stimulating questions and guidance throughout this thesis project. 

You have dared to let me work on my own for a while and yet you always ensured 

that I didn’t lose track. Thank you! 

I wish to express gratitude also to my second supervisor Dr. Martin Schlerf for his 

helpful comments and to the whole team at ITC who facilitated and evaluated my 

internet-based mid-term presentation. Special thanks also to Dr. Kees de Bie for his 

excellent GPS instructions and NDVI processing suggestions, and to André Kooiman 

for listening and support during the thesis proposal phase.  

Further I would like to extent my sincere appreciation to Professor Pete Atkinson 

(University of Southampton), Professor Petter Pillesjö (Lunds Universitet), Professor 

Kasia Dąbrowska-Zielińska (Warsaw University) and Professor Andrew Skidmore 

(ITC) for having made the GEM MSc programme possible. It has truly been a 

rewarding and enjoyable time!  

 

Außerdem ein dickes Dankeschön an meine Eltern Roswitha und Mike dafür, dass 

sie stets daran glauben dass ich weiß was ich tue und jederzeit mit Rat und Tat zur 

Seite sind. Besonders bedanken möchte ich mich auch bei Dietlind und Hermann 

Keller sowie Heilwig und Michel Parys für die finanzielle Unterstützung die mir 

dieses Studium erst ermöglicht hat. 

Finally, thanks to all my fellow GEM students – it’s been a really good time! – and 

to Jelle Harms, who has been a great fieldwork partner. Dude, I miss the dust. We 

should go for another fieldwork trip soon! 



iv 

 



v 

Table of Contents 

1. Introduction .......................................................................................... 11 
1.1. Research Background ................................................................. 11 

1.1.1. Context ................................................................................... 11 
1.1.2. Species Distribution Modelling.............................................. 12 
1.1.3. Study Area .............................................................................. 14 
1.1.4. Target Species ........................................................................ 15 

1.2. Problem Statement and Justification .......................................... 16 
1.3. Research Objectives.................................................................... 18 
1.4. Research Questions..................................................................... 19 
1.5. Research Hypotheses .................................................................. 19 
1.6. Research Approach ..................................................................... 21 
1.7. Assumptions................................................................................ 22 
1.8. Limitations .................................................................................. 22 

2. Methods and Materials......................................................................... 23 
2.1. Species Observation Data ........................................................... 23 

2.1.1. Provided NHMC Data ............................................................ 23 
2.1.2. Fieldwork Objectives ............................................................. 24 
2.1.3. Fieldwork Design and Limitations ......................................... 24 
2.1.4. Fieldwork Procedure .............................................................. 26 
2.1.5. Pre-processing of Species Observation Data.......................... 28 

2.2. Environmental Predictors ........................................................... 28 
2.2.1. Selection Criteria.................................................................... 28 
2.2.2. Spatiotemporal Framework .................................................... 30 
2.2.3. Pre-Processing of Topography, Soil and Land Use Variables31 
2.2.4. Pre-processing of NDVI variable ........................................... 34 
2.2.5. Pre-Processing of Land Cover Variables ............................... 36 
2.2.6. Pre-Processing of Climate Variables...................................... 38 

2.3. Modelling Technique.................................................................. 41 
2.3.1. Maxent as Statistical Model ................................................... 41 
2.3.2. Modelling Procedure .............................................................. 42 
2.3.3. Evaluation Methods................................................................ 43 

3. Results .................................................................................................. 45 



vi 

3.1. Research Question 1a:  Prediction Aross Crete .......................... 45 
3.2. Research Question 1b: Strongest Predictors Aross Crete........... 47 
3.3. Research Question 2a: Potential of ASTER Imagery ................. 49 
3.4. Research Question 2b: Replacing Occurrence Points with ‘Plots’

 53 
3.5. Research Question 3: Surface Cover Preferences....................... 54 

4. Discussion ............................................................................................ 57 
4.1. Critique of Evaluation Methods.................................................. 57 
4.2. Critique of Species Presence Data .............................................. 58 
4.3. Critique of Environmental Predictors ......................................... 59 
4.4. Interpretation of Results.............................................................. 60 

5. Synthesis............................................................................................... 62 
5.1. Conclusions................................................................................. 62 
5.2. Recommendations....................................................................... 63 

6. References ............................................................................................ 65 
7. Appendices ........................................................................................... 73 
 

 



vii 

List of Figures 

Figure 1 Target Species Podarcis erhardii........................................... 16 
Figure 2  P. erhardii presence records across Crete.............................. 17 
Figure 3 Determining optimum number of NDVI classes .................... 35 
Figure 4 Classified seven-year-mean seasonal NDVI values ............... 35 
Figure 5 Probability distribution across Crete ...................................... 46 
Figure 6 Jacknife results on variable importance across Crete............. 48 
Figure 7 Variability in ‘cumulative gain’ of predictors across Crete ... 48 
Figure 8 Probability distribution in Western Crete without ASTER 

predictor ............................................................................................... 50 
Figure 9 Probability distribution in W. Crete with ASTER predictor .. 50 
Figure 10 Effects of ASTER inclusion on relative variable importance 51 
Figure 11 Probability distribution using  ASTER predictor and ‘plots’. 53 
Figure 12 ‘Plots’ replacing ‘points’: effect on variable importance....... 54 
Figure 13 Overlay analysis of NDVI with CORINE predictor............... 55 
Figure 14 Overlay analysis of ASTER with CORINE predictor ............ 56 
 



viii 

List of Tables 

Table 1 Environmental variables tested for significance in this study .... 29 
Table 2 Correlation Matrix of ASTER bands (VNIR and SWIR)........... 38 
Table 3 Evaluation of distribution across Crete....................................... 47 
Table 4 Evaluation of distribution across Crete using top six predictors 

only 49 
Table 5 Evaluation of distribution for Western Crete without ASTER... 52 
Table 6 Evaluation of distribution for Western Crete with ASTER 

(points) ................................................................................................. 52 
Table 7 Selected count statistics of ground variables .............................. 55 
 

 



ix 

List of Appendices 

Appendix A Q1A: Response curves of predictors for distribution across 

Crete reflecting modelled range preferences of P. erhardii in ecological 

space 73 
Appendix B Probability Distribution across Crete using top six 

predictors only (input: all qualified occurrence sites) ......................... 73 
Appendix C Q2A: Response curves of predictors for distribution in 

Western Crete reflecting modelled range preferences of P. erhardii in 

ecological space (using only fieldwork-‘enhanced’ presence records) 74 
Appendix D Correlation matrix of continuous predictors ...................... 74 
Appendix E Comparison of previously modelled probability 

distributions.......................................................................................... 75 
Appendix F Evaluation of distribution for Western Crete with ASTER 

(and ‘plots’ of 10 points replacing former single occurrence point) ... 76 
Appendix G Presence counts per predictor class for a descriptive analysis 

of surface cover preferences of P. erhardii.......................................... 77 
Appendix H Preliminary count-based association of NDVI and ASTER 

with CORINE predictor (table showing NDVI counts above and 

ASTER counts below).......................................................................... 78 
Appendix I Coefficients for Relative Atmospheric Correction required 

to mosaic ASTER data from 2002 (far Western Crete) with ASTER 

data from 2006 (central Western Crete); coefficients derived from a 

dozen manually placed Pseudo-Invariant Features. ............................. 79 
Appendix J Determining the optimum number of classes (35) for 

ASTER-West ISODATA classification based on TD values .............. 79 
 

 

 





11 

1. Introduction 

1.1. Research Background 

1.1.1. Context 

Knowledge of potential species geographic distribution is of practical relevance to 

many disciplines. Epidemiologists and invasive species management require 

information on potential habitat suitability to focus their resources (Buckley et al., 

2006, Meentemeyer et al., 2004, Peterson and Robins, 2003). Cultivation of crops 

under changing climatic conditions  is of significant interest to the agricultural sector 

and associated industries (Rounsevell et al., 2006). In light of its unprecedented 

speed in geological-historic terms (IPCC, 2007), climate change also increases the 

pressure on many less common wildlife species, which are already struggling with 

relatively sudden habitat loss, degradation and fragmentation due to the unabated 

expansion of areas dominated by anthropogenic land use (Corsi et al., 2000. The 

challenges biodiversity conservationists face, may further illustrate the significance 

of such research.  

 

When determining optimum localities for reserve establishment, obviously a wider 

range of factors needs to be taken into account – not just single-species habitat 

suitability. Instead, many of these factors are aspects characterizing the ecosystem 

community level, e.g. species richness and evenness indices or the principles of 

complementarity, persistence and vulnerability. Their consideration is essential as 

reflected in the vast body of literature on this topic (Magurran, 1988, Rebelo, 1994, 

Margules and Pressey, 2000, Lévêque and Mounolou, 2001, Sarkar and Margules, 

2002, Magurran, 2005, Raffaelli, 2004, Henle et al., 2004). 

 

Without a thorough understanding of species-specific habitat requirements however, 

sound estimates of future species-specific habitat suitability cannot be made. 

Reserves established on this basis may prove unable to support some of the initially 

targeted species (van Teeffelen et al., 2006, Moilanen and Wintle, 2006). Should a 

keystone species be among this group of species facing unsuitable future conditions, 
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the worst-case scenario is a drastic decline in the reserve’s ecosystem functionality 

(Catterall et al., 2003). Given typically very limited financial and political resources 

in the field of protected area management, the consequences of such poor investment 

decisions may be considerable (Pressey et al., 1993). This example from the field of 

biodiversity conservation further illustrates the need to make models spatially 

explicit, as geometrical configuration of reserves is generally critical to success van 

Teeffelen et al., 2006). In conclusion, testing and advancing current species 

distribution models has a wide range of potential benefits for decision-makers in 

natural resource management. 

1.1.2. Species Distribution Modelling 

To predict species potential distribution, a range of models  has been developed. 

While major differences exist regarding the statistical algorithms used and their 

species occurrence data type requirements, all models generate predictions in  

multidimensional ecological space. Species distribution models therefore do not 

predict species geographic occurrences as such, but produce a spatially explicit 

probability surface (sometimes as binary output only) that represents habitat 

suitability in ecological hyperspace after factoring in some specified constraints 

(sometimes including variable interactions).  

 

According to ecological niche theory (Hutchinson, 1957), each species depends on 

the existence of a specific set of environmental conditions for its long-term survival. 

This concept refers to not only the abiotic environment but also to biotic factors of 

the respective ecosystem determining the abundance of resources as well as trophic 

chain interactions. As a consequence of such biotic interactions (competition, 

predation), but also of geographic barriers to dispersal and colonization as well as 

anthropogenic pressures, species in reality never fully occupy their fundamental 

niche, i.e. the ecological-geographic space which meets their requirements 

(Anderson et al., 2003). Instead, a species almost always occupies a subset of its 

fundamental niche only, which is  termed the realized niche (Brown and Lomolino, 

1998). The important implication of this concept for species distribution modelling is 

that occurrence records by definition can only be sampled from the realized niche. 

Predicted results therefore tend to underestimate the “potential” distribution (Phillips 

et al., 2006).  

 

Predictive distribution models generally contain three components: (1) an ecological 

model which serves to select and prepare the environmental variables for input, (2) a 
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data model which defines type and collection method of occurrence records used for 

input, and (3) a (non)-statistical model that integrates and analyzes these data 

(Austin, 2002). Identification of the relevant environmental variables and 

quantification of their interaction terms are the main challenges in determining the 

ecological model. Within the data model it is essential to consider whether species 

occurrence information is available in presence / absence format or as presence-only 

data, as this distinction results in different potential biases, suitable evaluation 

techniques and strongly influences the choice of the (non-) statistical model (Phillips 

et al., 2006, Guisan and Zimmermann, 2000).  

 

For binary response variables (presence/absence) a range of species distribution 

models has been developed, many of which use logistic regression approaches, most 

notably GLMs (McCullagh and Nelder, 1989) and GAMs (Hastie and Tibshirani, 

1990).  

For presence-only data – as needed in this study – a similar variety of (non)-

statistical models is available, although the proportion of recently developed models 

seems higher (Elith et al., 2006). While for instance BIOCLIM (Busby, 1991) and 

DOMAIN (Carpenter et al., 1993) as environmental envelope techniques work 

exclusively with presence-only data, most other models employ background samples. 

By using ‘pseudo-absences’ some methods, e.g. GAMs and GLMs, which were 

initially built to work with presence-absence data, have successfully been modified to 

work with presence-only data (Elith et al., 2006). GARP (Stockwell and Peters, 

1999), which combines rule-based and iterative random elements to infer species 

distribution, has been a reference model for some time. Recently however a large 

comparative study (Elith et al., 2006) has produced further evidence that Maxent 

(Phillips et al., 2004) may generally outperform GARP, especially when sample size 

is small (Hernandez et al., 2006), but not necessarily at local scales (García 

Márquez, 2006). Another promising adequate model for the purpose of this study 

recently developed by the machine learning community is BRT (Friedman et al., 

2000), while ENFA (Hirzel et al., 2002) has received increasing attention for its 

application of principal component and marginality aspects into the conventional 

ecological niche concept. Community-based models are another area of active 

research with promising results for both new approaches such as GDM (Ferrier et al., 

2002) which focuses on compositional dissimilarity, and for modifications of 

established approaches such as MARS-COMM (Friedman, 1991). These models use 

presence information of other species as surrogates to enhance predictions for the 

target species (Elith et al., 2006). Major differences between models exist regarding 

integration of the response variable (species occurrence), the selection, weighting 
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and fitting of individual predictors as well as provision for interactions among 

variables and output format of predictions (Elith et al., 2006). Some of these 

differences as well as potential biases related to presence-only data will be discussed 

in more detail in later chapters when describing Maxent and fieldwork design.  

 

There are at least three reasons why research testing models for presence-only data is 

very valuable: Firstly, a large number of geo-referenced presence-only data resides 

with herbaria and museums and becomes increasingly accessible via the internet. 

Secondly, for most faunal studies species information is limited to presence-only 

records, because of the spatial and temporal mobility which characterizes wildlife 

biology. Full enumeration sampling techniques are virtually impossible in this case, 

as a species may be absent only temporarily (‘false absences’) from the site due to 

e.g. weather conditions, population dynamics and trespassing humans (Hirzel et al., 

2006). Note that the degree of certainty attached to this ‘absence’ claim depends 

mainly on the mobility of individuals of the species, on how abundant / detectable 

the species is locally (Kéry, 2002), and on the survey design (Mackenzie and Royle, 

2005). Thirdly, as a consequence of this lack of complimentary absence information 

for modelling, less mature evaluation techniques are available for presence-only 

models (Fielding and Bell, 1997). This thesis intends to contribute to this area of 

research by testing the performance of a newly developed distribution model 

(Maxent) on a presence-only dataset. 

1.1.3. Study Area 

The island of Crete is located in the Eastern Mediterranean sea and belongs 

politically to Greece since 1913. Stretching about 245 km from West to East (slightly 

North of the 35° N parallel) and between 12 and 56 km from North to South, it 

covers an area of approximately 8,336 km2, thus representing the fifth largest island 

of the Mediterranean. An overview map of the study area is provided in chapter 1.2. 

A high mountain range forms the geological ‘backbone’ of Crete and spans the island 

from West to East reaching peak altitudes of 2456 m (Psiloritis) and 2452 m (Lefka 

Ori). The four main mountain massifs are separated by undulating lowlands; the 

Mesará in the South constitutes the island’s major fertile plain. Four large peninsulas 

structure the North coast of Crete. There are numerous offshore islands, some of 

them only a few hundred square meters in size.  

Geologically, much of Crete’s terrain is characterized by karst formations whose 

limestone and dolomite rocks have also allowed for the carving of deep gorges and 

underground drainage systems. As a result, large rivers are rare and most streams fall 
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dry during summer. Fertile soils on Crete are mostly rendzinas on calcareous parent 

material. In higher altitude areas, this material decomposes mostly into red clays, and 

yellow clays below 1000m (Fielding and Turland, 2005). 

Crete enjoys a Mediterranean climate. Summer from June to August is hot and dry 

except for thunderstorm rainfalls in the mountains induced by northerly winds from 

the Aegean. Winter ranges from November to March and receives most of the annual 

rainfall due to moist, westerly winds from the Atlantic. Air temperatures however 

remain below those of the sea and snow cover is common above 1600 m during this 

period (Fielding and Turland, 2005). Geographic variations in rainfall and 

temperature will be discussed in more detail further on. 

Species richness on Crete is high for both flora and fauna, as is the degree of 

endemism. This is due to both it’s recent history as an island in isolation for five 

million years as well as to Crete’s equidistance to three ecological regions of 

continental dimension – Asia (Turkey), Africa (Lybia) and Europe (Greece) – to 

which it has been linked by land bridges temporally from time to time. Vegetation 

composition however has been heavily influenced by human activities over the last 

5000 years, in particular by widespread deforestation in the 17th century aggravated 

by an increasingly drier climate (Fielding and Turland, 2005, Legakis and 

Krypriotakis, 1994). 

Home to Europe’s oldest urban civilization – the Minoan culture – until its 

earthquake-induced collapse in 1450, Crete is now home to about 600,000 

inhabitants and the destination for 2 million tourists every year. About 55% of the 

population lives in urban, the considerable rest in rural areas. The agricultural sector, 

including grazing cattle, has only recently been replaced by the service industry 

(mainly tourism) as the basis of the Cretan economy. Wine, raisins, olives, fresh 

fruits, horticultural products like tomatoes and eggplants, as well as honey and herbal 

pharmaceuticals remain important exports to – mostly – mainland Greece (Wikipedia 

contributors, 2007).  

1.1.4. Target Species 

Podarcis erhardii (Squamata: Lacertidae) is a small lizard with about 7cm in body 

length and a tail twice as long. The skin is smooth and ranges in colour between grey 

and brown, occasionally green. The dark side lines covering its back are always 

thicker than the dorsal line if it exists at all. Island populations however tend to have 

spotted patterns on the back instead of lines. Occasionally P. erhardii displays a row 

of blue spots in the lower abdomen area which is otherwise bright in colour. It’s diet 

consists mainly of insects and other arthropods. When threatened, the species usually 



 

16 

runs and hides in small cracks, holes and shrub (Engelmann, 1986, Arnold, 2002). 

As it’s name suggests, the species is a good climber, but it is not a good swimmer 

and unable to cross even narrow stretches of water (Poulakakis et al., 2005).  

 

  
[Photos: Jelle Harms, Crete 2006] 

Figure 1 Target Species Podarcis erhardii 

P. erhardii populations are relatively common throughout the Balkan region 

extending South into mainland Greece, the Eastern rim of the Peloponnesus and 

many of  the Aegean islands west of the Mid Aegean trench including Crete 

(Poulakakis et al., 2005). Although there is a certain degree of taxonomic uncertainty 

at subspecies level (Poulakakis et al., 2005), the Crete population of P. erhardii 

seems to have lived in isolation for about 5.2 million years (Poulakakis et al., 2005). 

Coastlines with rocky, sandy or pebble shores, rocky areas and Mediterranean shrub 

lands represent suitable habitat for P. erhardii, as well as garden and urban 

environments (Poulakakis et al., 2005). The adaptive capability of P. erhardii may 

be considerable, as island populations have been found to inhabit also open spaces 

like sand dunes. Furthermore, perhaps in response to greater spatial and seasonal 

clustering of food availability on less hospitable islands, these P. erhardii 

populations also display faster digestive abilities (Pafilis et al., 2007).  

1.2. Problem Statement and Justification 

Apart from the above biogeography studies based on phylogenetics, there appears to 

be a lack of literature on what environmental variables constitute the main gradients 

specifying the niche requirements of P. erhardii and to what extent they determine 

the species current geographic distribution on Crete. This problem is all the more 

intriguing as the observations of P. erhardii are not uniformly distributed 

geographically across the island. 
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 [Source: NHMC, 2006 and own fieldwork]. 

Figure 2  P. erhardii presence records across Crete 

While some islands and islets surrounding Crete are inhabited by P. erhardii, others 

are not – despite the occasionally very small distance of less than 100 m. Even 

stranger, while occurring on near-coastal islets of Eastern Crete, P. erhardii has not 

been observed at all on the Eastern and Central parts of mainland Crete. Note that 

significant sampling of herpetofauna has taken place all over Central and Eastern 

Crete, which may not have been focusing on P. erhardii but could have still yielded 

occasional observations of P. erhardii. In the Western third of Crete however the 

species is abundant between sea level and 2000 m altitude. It has been observed on 

coastal, open, and rocky areas as well as scrublands. This geographic pattern 

provokes the question whether P. erhardii can be considered a generalist rather than 

a specialist regarding habitat requirements. It also raises the question of whether 

there is a particular preferential or prohibitive (set of) environmental variable(s) that 

affect P. erhardii in Western Crete, and the remaining parts of mainland Crete 

respectively.  

 

Owing to the advances in modelling techniques described earlier and the provision of 

access to P. erhardii occurrence records stored at the National History Museum of 

Crete (NHMC), this knowledge gap can be – at least partially – addressed within this 

thesis. 

From a biogeography perspective, the significance of such research lies in a better 

understanding of whether P. erhardii populations on Crete and the near-coastal islets 
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are in a stage of expansion or retreat. If no evidence emerges for a hostile 

environment that likely prevented P. erhardii from (recent) colonization of mainland 

of Central and Eastern Crete, it may prove worthwhile to investigate historical 

factors more closely, such as island fragmentation due to tectonic changes, the 

presence of parasites and certain early anthropogenic land use practises.  

From a more utilitarian perspective, the justification for this research lies in the 

demonstration as to what extent environmental data of different scale and detail – 

including high-resolution remote sensing data – together with a suite of GIS tools can 

be employed to identify and extrapolate species-specific habitat suitability. Both 

more evidence for the potential of remote sensing data in fauna species distribution 

modelling (De Leeuw et al., 2002), so as well as further insights into issues of 

adequate scale for predictor variables (García Márquez, 2006, Murwira et al., 2003) 

may result from this approach. Should it produce promising and transferable results, 

it may represent a more cost-effective way of identifying and monitoring areas of 

high importance for a given target species. Researchers and managers from a variety 

of related disciplines may benefit from this knowledge, e.g. epidemiologists, 

invasive-species managers and reserve planners for biodiversity conservation (see 

also chapter 1.1.1). 

1.3. Research Objectives 

The general objective of this research is to investigate to what extent the currently 

observed geographical distribution of P. erhardii on Crete and its near-shore islands, 

can be explained by (current) environmental conditions. More specifically, this 

research sets out to 

1a) create a potential species distribution map with associated information about  its 

prediction strength. 

1b) identify the set of most significant environmental predictors. 

2a) evaluate the usefulness of an ASTER-derived land cover map as an 

environmental predictor. 

2b) assess the sensitivity of the distribution model created in (2a) to changes in the 

way species occurrence data are expressed.  

3) conduct a preliminary investigation into land and vegetation cover types preferred 

by P. erhardii. 
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1.4. Research Questions 

1a) Can a probability distribution for P. erhardii be modelled across Crete that 

‘explains’ the species’ curious geographic occurrence pattern, using Maxent and a 

given set of high accuracy species observation points derived from both fieldwork 

and the NHMC database?  

 

1b) Which are the most relevant environmental predictors for this distribution model 

and what is the relative loss in prediction strength when only the most important one-

third are used for modelling? 

 

2a) Can the probability distribution in Western Crete be improved by adding an 

ASTER-based land cover classification to the suite of predictor variables? 

 

2b) How does the probability distribution model created for Western Crete (which 

includes the ASTER-derived variable) change, if the initial species observation 

‘points’ are replaced by a set of points representing a wider area presumed to feature 

“natural habitat conditions” as assessed in-situ during fieldwork?  

 

3) What are the land cover and vegetation conditions preferred most by P. erhardii? 

1.5. Research Hypotheses 

1a - H1: A probability distribution for P. erhardii across Crete can be modelled that 

differs significantly from random and features a regularized training gain higher than 

1.5 (using the Maxent algorithm and predictor data with a resolution of 1km or 

finer).  

 

1a - H0: A probability distribution for P. erhardii across Crete that differs 

significantly from random and features a regularized training gain higher than 1.5 

(using the Maxent algorithm and predictor data with a resolution of 1km or finer) can 

not be modelled. 

  

 

1b – H1: Given the pattern of documented P. erhardii observation localities on 

Crete and the scale of the study area, the most important environmental predictor 

identified in (1a) – measured as individual training gain using Jacknife – is a variable 

representing a ground feature. 
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1b – H0:  Given the pattern of documented P. erhardii observation localities on 

Crete and the scale of the study area, the most important environmental predictor 

identified in (1a) – measured as individual training gain using Jacknife – is not a 

variable representing a ground feature. 

 

 

2a – H1:  The probability distribution in Western Crete can be improved in terms of 

AUC by including an ASTER-based land cover classification variable. 

 

2a – H0:  The probability distribution in Western Crete can not be improved in terms 

of AUC by including an ASTER-based land cover classification variable. 

 

 

2b – H1:  The training gain of the probability distribution modelled for Western 

Crete (including the ASTER-derived variable) increases, if the initial species 

observation ‘points’ are replaced by a set of points representing a wider area 

presumed to feature “natural habitat conditions” as assessed in-situ during fieldwork. 

 

2b – H0:  The training gain of the probability distribution modelled for Western 

Crete (including the ASTER-derived variable) does not increase, if the initial species 

observation ‘points’ are replaced by a set of points representing a wider area 

presumed to feature “natural habitat conditions” as assessed in-situ during fieldwork. 

 

 

3 – HA:   P. erhardii presence records coincide significantly with ‘open areas’, i.e. 

the most frequent NDVI class among presence sites belongs to the lowest third of all 

NDVI classes generated for Crete (using an ISODATA classification).  

 

3 – H0:   P. erhardii presence records do not significantly coincide with ‘open 

areas’, i.e. the most frequent NDVI class among presence sites does not belong to the 

lowest third of all NDVI classes generated for Crete (using an ISODATA 

classification). 
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1.6. Research Approach  

 

a) Pre-process remotely sensed environmental variables where necessary, e.g. NDVI 

and ASTER-based land cover. For the latter this includes the full sequence of 

orthorectification, relative correction between granules, mosaicing, cloud removal 

and classification. 

 

b) Prepare data for all environmental variables to fit study area regarding extent and 

spatial resolution, apply identical projection and convert to ascii format for Maxent. 

 

c) Conduct fieldwork to enhance provided species data by determining representative 

“natural habitat polygons” (mapping units) in immediate vicinity of the species 

observation point as listed in the NHMC databank. Complement species observation 

data by own sightings made during fieldwork (optional, for analysis outside this 

thesis).  

 

d) Prepare visited species observation sites as training data for subsequent modelling 

by converting it into target projection, rasterizing both the full area and the centre 

point of each mapping unit. Finally, project, rasterize and integrate additional species 

observation points provided by NHMC.  

 

e) With Maxent software, model potential species distribution across Crete using all 

environmental variables (except ASTER-based land cover)  and species occurrence 

data represented by (1) the centre points of recorded “natural habitat polygons”, (2) 

the above plus additional NHMC records with accuracy of better than 500m radius 

and who have not been visited (‘replaced’) during fieldwork.  

 

f) Analyse (2) and use (1) to compare sensitivity of individual variables to different 

extent; run (2) again using only the most important variables; overlay results with 

remaining (less accurate) NHMC records for visual analysis; respond to hypotheses 

and research questions (1a) and (1b). 

 

g) Evaluate results by partitioning occurrence data and use of (1) threshold-

dependent binomial z / t statistic, (2) TSS and (3) threshold-independent ROC/AUC.  

 

f) Include the ASTER-based land cover variable as model input and run Maxent 

again using all variables, but for comparison reasons with species data as in (e1). 
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Limit projection to Western Crete. Compare (e1) and use this run’s AUC values to 

address hypothesis and research question (2a). 

 

g) Randomly select 10 points inside each mapping unit created during fieldwork 

(minimum distance 5 m); run Maxent again using these ‘plots’ instead of previous 

mapping unit central points together with all predictors as in (f). Compare resulting 

AUC value with the one created in (f). Address hypothesis and research question 

(2b). 

 

h) Explore frequency statistics of original predictor files, sample values at 

‘enhanced’ mapping unit central point locations plus NHMC presence records if 

accuracy better than 1 km; overlay NDVI and ASTER predictors with CORINE 

variable and extract associated names for land / vegetation cover variables. Consider 

the relative class frequency of total background when interpreting count-based 

predictor class preferences of P. erhardii. Acknowledge limitations of this 

descriptive analysis and address hypothesis and research question (3).  

1.7. Assumptions 

It is assumed that the available species presence data – albeit ‘static’ in character –

reflect the equilibrium state of the long-term species-environment relationship 

(Hirzel and Guisan, 2002), i.e. that the sample is derived from source not sink 

populations. As to environmental predictor data, the assumption is made hat present 

conditions represent past conditions to the extent that changes in past conditions did 

not surpass the adaptive capability of P. erhardii.  

 

Looking at the geographical distribution of confirmed P. erhardii observations on 

Crete and near-coast islets alone, ‘distance to shoreline’ may turn out – if tested – to 

be a significant environmental predictor. However, as there are confirmed species 

observations  throughout the Balkans and mainland Greece in locations at least 50 

km away from the coast (Poulakakis et al., 2005), this study assumes that ‘distance to 

shoreline’ does not matter on Crete either. Several assumptions are made with 

respect to the acquired ASTER imagery. They are outlined in the respective Data 

Preparation chapter. 

1.8. Limitations 

Due to time and budget limitations, fieldwork was restricted to visiting P. erhardii 

occurrence sites located West of Heraklion. In-situ data related to habitat suitability  



23 

could therefore not be generated for Eastern and much of Central Crete. 

Consequently, not all species occurrence records provided in the NHMC database 

could be enhanced (as described in chapter 2.1.4). Thus, when species occurrence 

records were used to model a distribution across all of Crete, these data were not 

identical in terms of positional accuracy and descriptive quality. This inconsistency 

however is unlikely to have caused a significant degradation of species occurrence 

records, because for the purpose of this study, positional accuracy was only adjusted 

to better coincide with presumed natural habitat conditions (as opposed to a village 

centre for instance). 

 

Unfortunately, ASTER imagery could only be compiled for Western Crete. Although 

relative atmospheric correction was successfully performed granules covering 

Western Crete, it proved impossible to mosaic and append granules covering central 

and Eastern Crete due to the presence of band-specific haze and a particular narrow 

image overlap in central Crete. 

 

Finally, generated probability distributions display some NoData areas – mostly 

along the coast and the South-Eastern mainland including offshore islands. This is 

due to the varying spatial extent and generalization of the environmental variables 

used (and in the case of ASTER also a consequence of cloud cover).  

2. Methods and Materials 

2.1. Species Observation Data 

2.1.1. Provided NHMC Data 

Species occurrence data were obtained from the National History Museum of Crete 

(NHMC, 2006) as part of a collaborate research project between the NHMC at the 

University of Crete, Greece, and ITC, The Netherlands. The data were used both as 

reference for partial ‘enhancement’ procedures during fieldwork as well as direct 

input into the species distribution model.  

To ensure temporal correspondence with the suite of environmental predictors, 

topicality of the NHMC data was checked and considered sufficient, as P. erhardii 
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observations dated back on average to 1999 with no observation older than 1990. 

Data were provided as presence-only records in EGSA projected coordinate system 

as well as geographical Latitude / Longitude. As many occurrence sites had been 

revisited several times, only one (the most recent) P. erhardii observation record for 

each identical XY locality was extracted from the database and included in this 

project. After removing all presence-only records with an associated accuracy of 

lower than 1km, a total of 51 (out of 69) were used for further analysis. Eventually, 

after fieldwork allowed for the ‘replacement’ of most locations in Western Crete (see 

next chapter), a total of 29 species observation records from this database remained 

for direct input into the distribution model.  

2.1.2. Fieldwork Objectives 

The principal objective of fieldwork was to enhance provided species observation 

data by recording areas of representative natural habitat for each provided point 

location. The replacement of general location information (e.g. XY coinciding with a 

road crossing or village centre) was expected to improve results when modelling 

species-environment relationships. While this information may or may not improve 

the outlook for research objective 1, it was a requirement for research objective 2: 

the assessment of the usefulness of an ASTER-based land cover classification map 

with 15m resolution as environmental predictor.  

A secondary objective of fieldwork was to record in-situ macrohabitat information as 

auxiliary data to support (a) the ASTER-based land-cover classification and (b) to 

develop a better understanding of potential ecological surface cover variables 

influencing habitat suitability for Podarcis erhardii. The data collected represents an 

opportunity to apply vegetation-based cluster analysis and ordination techniques (as 

described e.g. in Jongman et al., 2005) to infer a new set of proxy variables to further 

improve the habitat suitability model for P. erhardii. An analysis of these records 

beyond descriptive statistics however is not intended within this thesis.  

 

2.1.3. Fieldwork Design and Limitations 

To achieve both fieldwork objectives above, fieldwork design had to address at least 

five challenges associated with the provided species observation data: extent, 

sampling strategy, associated biases, sample size and seasonal timing.  

 

Firstly, due to time and budget limitations, the Eastern part of the island could not be 

covered during fieldwork, although that region contains confirmed observations of P. 
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erhardii on several offshore islets. The limited geographical extent of fieldwork 

meant that for subsequent modelling data, ‘enhanced’ and ‘non-enhanced’ 

occurrence data had to be combined (see next chapter for details). 

 

Secondly, it was not possible to set up a sampling strategy for the specific purpose of 

this study prior to sampling, because the existing NHMC database was used as 

species occurrence dataset – and fieldwork ‘enhancement’ was intentionally 

restricted to marginally modifying each location. Although 3 new P. erhardii 

observations were made during fieldwork and 9 occurrence sites replaced by two 

sites in the vicinity (which further increased ‘site selection bias’, see below), this did 

not fundamentally change the predetermined regional stratification of the NHMC 

dataset. As in this case any random sampling among NHMC data would suffer from 

a bias whose magnitude would be unknown (Hirzel et al., 2002), the solution was an 

(almost) full enumeration of provided occurrence sites within the predefined extent, 

i.e. Western Crete. 

Thirdly, despite refraining from sampling within the provided observation records, 

any existing biases present in the original NHMC dataset obviously continued to 

exist. Researchers who collected the NHMC data in the first place, almost certainly 

introduced site selection biases as a function of e.g. proximity to roads and different 

sampling methods due to different fieldwork purposes (Anderson et al., 2003). 

Spatial autocorrelation in areas of intense sampling (Segurado et al., 2006), may also 

exist, e.g. South of Levka Ori. Although the lack of P. erhardii observations in 

mainland Eastern Crete may in fact not be a consequence of low sampling effort, 

because NHMC and partners have carried out substantial fieldwork in this area 

yielding a multitude of other species observation (Lymberakis, 2006), considerable 

site selection bias is likely to exist and will have to be accounted for when 

interpreting predicted distribution. Computing density for all presence records across 

Crete (e.g. on a 100 km2 grid) and subsequently randomly selecting an equal number 

from each cell could have perhaps reduced spatial autocorrelation, but would also 

have created potential bias in ecological space. The other two main types of bias 

apart from site selection – poor recording techniques and measurement flaws (Hirzel 

and Guisan, 2002) – were even more beyond the control of this study and assumed to 

be negligible if existent. 

Fourthly, ‘sample size’, i.e. the number of species occurrence records available for 

modelling, was essentially predetermined by the NHMC database. This can 

constitute a major problem if (a) the data come from heterogeneous sources with 

varying degrees of compatibility (Margules and Austin, 1994) or when (b) the 

number of observations is relatively low with respect to the study area covered 
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(Jaberg and Guisan, 2001). As the data provided by NHMC were subject to an expert 

standardization upon integration into the database, the assumption is made that it 

meets the first criterion ‘homogeneity of source’. The total number of unique 

observation sites however (47 located in Western Crete, of which 44 were 

‘enhanced’ during fieldwork plus 3 new observation sites; plus another 25 located on 

the islets of Central and Eastern Crete) is relatively low compared to the large study 

area. On the other hand, a study by Stockwell and Peterson, 2002, found that 50 data 

points can be sufficient to produce near-maximal occurrence predictions employing 

coarse surrogates and  a machine-learning model (note: GARP not Maxent).  The 

number of species records in this study is hence likely to be just about large enough 

for modelling all of Crete; for modelling the subset of Western Crete alone however 

(46 ‘enhanced’ points), any validation based on splitting these records into training 

and test data, must be interpreted with utmost care.  

Finally, as fieldwork was conducted from October 2nd – 21st, 2006, conditions for 

recording habitat information and sighting P. erhardii in-situ were impacted by some 

bad weather. ‘Natural habitat polygons’ however, could still be identified with 

sufficient confidence. Hence, as little of the macrohabitat information recorded is 

being used in this thesis, an introduction of bias due to the timing of fieldwork is 

unlikely. 

2.1.4. Fieldwork Procedure 

To meet the primary fieldwork objective, the provided NHMC presence records 

were ‘enhanced’ (and possibly improved in terms of accuracy as well) by creating 

one or more ‘natural habitat polygons’ in the immediate vicinity of each visited 

presence record, representing the environmental conditions assumed to have ensured 

the species long-term survival at this location. 

Some preparation of auxiliary data was required however prior to these recordings. 

As not all species observation records in the NHMC database referred to an exact 

location (XY point) but contained the accuracy information for each locality as an 

extra field, a corresponding buffer zone was created around each point, thereby 

indicating the approximate area within which the species was observed. This 

accuracy information was provided categorically with classes defined as “20-100 m”, 

“101-300 m”, “301-1000 m”, “1-5 km” and “over 5 km”. The buffer zones were 

given the maximum value of each category; the latter one a proxy value of 10,000m.  

 

Next, each species observation locality in the NHMC databank was visually 

inspected and recoded  in the field, following the procedure below:  
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- a compact polygon of about 100m2 was created around the exact XY point unless 

the location was dominated (or tightly encroached) by man-made infrastructure 

(grazing accepted). A minimum distance of about 10 m was maintained between 

polygon borders and any non-natural features such as a road. If the exact location 

coincided with a road or turned out to be inaccessible, the polygon was created as 

close to the exact locality as possible. 

- considering the point-specific accuracy of the observation, sometimes additional 

polygons were created for points with an accuracy of less than 100 m in order to 

capture the full range of apparently or potentially suitable habitat. A range limit of 

about 200 m away from the exact locality was established however, which equalled 

the average visibility and walking distance considered feasible given the time and 

budget constraints of the fieldwork. 

- an additional polygon was created within this range if (a) a very heterogeneous 

surface cover was observed which the observation record obviously referred to, e.g. 

a patchwork of high shrubs, rocky outcrops, grassland and tall trees. In this case a 

polygon was created for each main natural surface cover type based on visual 

inspection. A unit was delineated around a distinct area where internal heterogeneity 

of the potential unit was visually smaller than the heterogeneity observed between 

potential units. 

- an additional polygon was created outside this range – but within the buffer zone – 

if (b) it was not feasible to access the 200m range. In this case a polygon was placed 

as close as possible to the range zone, as soon as a fairly homogenous natural surface 

cover was found and deemed akin to the one of the exact locality.  

 

The above procedure of placing polygons – also coined “mapping units” – around or 

near species observation localities was primarily based on visual analysis of surface 

cover. However, both a CORINE land cover map and ASTER imagery were 

displayed on the iPAQ handheld and used to assist in this process. The ASTER 

imagery used for this purpose was a simplified land cover classification map, created 

by first running principal component analysis (PCA) on the original image 

(orthorectified, all VNIR and SWIR bands) and then an ISODATA classification 

algorithm on the PCA image using the top five “bands” as classes (Jensen, 2005). It 

was displayed as two separate RGB images (4-3-2  and 3-2-1) and owing to its large-

scale resolution it primarily assisted in ensuring homogenous mapping units. The 

CORINE layer primarily helped to find out if there was a major second or third 

natural land cover type present in the 300m range, which would justify the creation 

of an additional polygon for this particular species observation point.  
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For each of the mapping units identified, a number of macrohabitat parameters were 

recorded. Most of these described the area contained in the mapping unit, some 

characterized the overall landscape, while a third group contained  species-specific 

ecological observations. Additionally, metadata such as weather conditions, time of 

the day, minutes spent searching for P. erhardii etc was recorded. It was beyond the 

scope of this study however to prepare these data using canonical ordination 

techniques (Jongman et al., 2005) and to employ them as additional predictors for 

modelling P. erhardii habitat suitability.  

2.1.5. Pre-processing of Species Observation Data  

Two different species observation data sets were prepared as input for modelling: 

The first one (46 points) contained only the central points of the mapping units 

created during fieldwork (F = fieldwork). The second one (+29 points) contained in 

addition to these 46 points, all non-visited observation points as listed in the NHMC 

databank, which had an accuracy of 1000m or better and had not been visited (and 

‘replaced’) during fieldwork (FM = fieldwork + NHMC). Although it could not be 

verified during fieldwork whether the selected non-visited points in fact coincide 

with “representative natural habitat”, the sheer geographic location of these points – 

remote mountain areas and uninhabited islets – was considered sufficient evidence to 

make this assumption. Thus, in the second input data set, all visited and selected 

non-visited observation sites were combined. The main reason for creating this 

second input dataset is that it includes 17 out of 21 of the observation points located 

in the non-visited Eastern part of Crete. It was expected that this would improve the 

fit of the probability distribution to known presence sites on Crete, as the few 

remaining sites not included in this ‘sample’ (due to their poor accuracy) seem to not 

be located at the extremity of any predictor and are geographically quite evenly 

distributed. Both observation datasets were prepared in ArcMap. XY data were 

extracted after conversion into the target projection, and eventually converted into 

.csv format (together with the species field) for input into Maxent modelling 

software.  

2.2. Environmental Predictors 

2.2.1. Selection Criteria 

Environmental predictors were selected in light of the ecological processes assumed 

to influence P. erhardii, subject to data availability and the objective of this study. 

This represents a deductive element in this thesis’ primarily inductive research 
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approach (for a related theoretical discussion see Corsi et al., 2000 and De Leeuw et 

al., 2002). Both direct (e.g. rainfall, temperature) and indirect variables  (e.g. 

altitude, cloud cover) were incorporated along with a set of proximal resource 

variables (land cover standing for shelter and food availability). Isothermality and 

temperature seasonality are included as surrogates for climatic stress tolerance 

(Austin and Smith, 1989). Variables representing anthropogenic disturbance factors 

(e.g. distance to settlements) were not considered given the species literal preference 

for man-made walls. As neither the exact response curves of these variables nor the 

amount of (likely) interdependencies are known however, no attempt was made to 

establish a more solid ecological model prior to statistical modelling. Although this 

general approach is common in species distribution modelling (Austin, 2007) it is 

clear that outcomes would gain interpretability if predictor selection was based on a 

more comprehensive and explicit theoretical framework. The ASTER-derived land 

cover variable was selected as input primarily to investigate the potential usefulness 

of high-resolution remote sensing data in this context.  

 

**   explicit reference is made to ESBN as the owner of this dataset (see reference section for full 
details); I acknowledge that this data has been made available for research purposes only, and that no 
commercial activities or passing on of the data to third parties is allowed.  

Table 1 Environmental variables tested for significance in this study 

Only simple multiple regression was performed (on the continuous variables), which 

resulted in the removal of the predictor ‘minimum temperature of coldest month’, as 

it showed not only perfect correlation with ‘mean annual temperature’ (see 

Appendix D) but also a very low added ‘cumulative gain’ in preliminary Maxent 

runs (based  on Jacknife). Also, despite its relatively strong predictive contribution, 
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the variable ‘soil type WU’ was excluded from subsequent analysis, because it 

theoretically duplicated information contained in the predictor ‘Soil Type WRB Full’ 

and its classes were more general than the alternative. The remaining 18 classes are 

referred to hereafter as “all predictors”. Although multi-collinearity tests using e.g. 

the variance inflation factor (VIF) method are available for a more advanced 

correlation analysis (Jongman et al., 2005, Brauner and Shacham, 1998), this study 

abstains from further variable elimination, as correlations are frequent in ecology and 

essential information might thus accidentally be discarded in the process (Burnam 

and Anderson, 1998).  

 

All data were either downloaded via the internet from the respective provider or 

obtained from ITC or NHMC. Details for each source are listed in chapter 

‘References’. 

2.2.2. Spatiotemporal Framework 

To ensure positional accuracy and attribute integrity of all environmental predictors 

intended as modelling input, the projected coordinate system, geographic extent (two 

versions: all of Crete and only Western Crete) and spatial resolution of all variables 

were set to coincide prior to converting all predictor data from raster into ascii 

format.  

As target projection coordinate system, a modified Albers Equal Area Projection 

based on the WGS 84 ellipsoid was chosen, because preserving area characteristics 

was deemed the most critical aspect given the large size of the study area. To ensure 

compatibility with other projects conducted in the Mediterranean region by ITC and 

partner institutes, the central meridian was set to 18° E. The other parameters were 

specified as follows: linear unit: meters; false easting of 4,000,000 m; false northing: 

0 m; standard parallel 1: 30; standard parallel 2: 50; latitude of origin: 0; datum: 

WGS 84.  

Spatial resolution was set to 15 m, in order to maintain maximum information 

content of the ASTER-based land cover variable. Resampling was performed using 

Nearest Neighbour in order to avoid interpolating attribute values and introducing 

false precision. 

To minimize computing requirements, all environmental data were clipped along the 

coastline of the study area, assigning NoData values to sea areas. The SRTM DEM 

provided the reference coastline, as it had been subject to expert coastline editing 

prior to being made available to the public.  

Temporal correspondence between species occurrence records and selected 
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environmental data is essential (Anderson and Martinez-Meyer, 2004). With 

occurrence data collection dating back to 1999 on average, the selected 

environmental predictors were considered to meet this requirement in general, as 

older data represented more permanent features like geology and – arguably! – 

climate, although NDVI (average 2002) and high-resolution ASTER imagery 

(average 2004) should be interpreted with caution in this respect. 

The following chapters describe each environmental data set in more detail and 

provide a summary of any variable-specific preparatory steps undertaken.  

2.2.3. Pre-Processing of Topography, Soil and Land Use Variables 

The environmental variable “altitude” was acquired via ITC from U.S.G.S. in SRTM 

“Finished” Format at a spatial resolution of 3 arc seconds (~90 m). The data were 

recorded in February 2000 during the Shuttle Radar Topography Mission. Note that 

the 90m data set was generated from the original data with 1 arc second resolution, 

which has been made only available so far for U.S. territory. The data were 

“finished” prior to distribution by delineating and flattening water bodies, correcting 

coastlines and removing extreme values representing likely errors. The resulting 

DEM was provided in geographic coordinates referenced to the EGM96 geoid. 

USGS states a horizontal and vertical accuracy of 20m (circular) and 16m (linear) 

respectively, at 90% confidence level (U.S.G.S., 2006).  

 

To meet the objectives of this study, the following pre-processing steps were 

performed on the altitude data:  1) clipped out Crete and surrounding islets as study 

area,  2) resampled subset to 0,000138° (~15m) resolution using NN, 3) projected 

data into target projection, 4) resampled data to final 15m resolution using NN, 5) 

extracted only land (and lake) areas from study area as specified earlier, 6) set all 

remaining values < 0 to zero, 7) converted all values into integer format to reduce 

model run time and 8) converted file into ascii format given the data input format 

requirements of Maxent.  

The sequence of these pre-processing steps merits a short justification. Although 

resampling the data prior to projecting it meant longer processing time, it also 

limited planar cell shifts to a maximum of ~10 m diagonally. If projecting had been 

done prior to resampling, the rotation and stretching (i.e. projecting) of each cell 

would have caused a shift in position of up to half the cell size (in up-down or / and 

right-left direction). This would have equalled up to ~ 45 meters for this data set. 

Given that aspect and slope information were derived from this data set – and 

“natural habitat polygons” were recorded with an average size of 30x30 m – 
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maintaining maximum positional accuracy was more important than processing time. 

Setting negative values to zero cells delineated as land, was done assuming (with 

confidence) that no significant sub-sea level areas exist on Crete.  

 

The aspect variable was generated from the (clipped) DEM above. To  avoid 

incorrect flat areas however, the respective tool box function in ArcMap was 

employed prior to resampling, projecting, land area extraction and ascii conversion 

(steps that were subsequently performed in this sequence). 

 

Calculation of slope required a different pre-processing approach, because unlike 

aspect, slope could not be calculated prior to projection as meter units were required 

in all dimensions. Resampling to 15m with standard NN technique, prior to slope 

calculation however, would result in a “mesh” of large flat areas. To solve this 

accuracy dilemma, it was decided to project the data with Cubic Convolution (CC) 

while maintaining the initial resolution (~90m). This avoided the creation of meshed 

flat areas. Although a potential horizontal (diagonal) shift of ~64 m – i.e. 

SQRT(452+452) – could not be prevented in this case, the use of CC offset some of 

the negative effects on accuracy, as it interpolated altitude values in response to 

horizontal cell shifts. CC calculates the weighted average of the value of the 16 

surrounding neighbouring cells. Depending on the data, CC can smooth or sharpen 

the surface. It is critical to note that CC alters cell values when fitting the splines 

(Leica Geosystems, 2003). Given the relative large reduction in resolution (90 to 

15m) however and the rugged terrain where positions of mountain ridges are 

important, the reduced loss in horizontal accuracy is considered worth the loss in 

vertical accuracy (found to be about 2 m near sea level and 20 m at 2000m altitude). 

Moreover, when resampling between such resolutions the use of CC rather than NN 

is not uncommon (Leica Geosystems, 2003).  

 After this projection / resampling process, the slope tool in ArcMap was used and 

the data resampled to 15m using NN. Finally, the reference land area was extracted 

and  the data converted into ascii format.  

 

Geology data were obtained from NHMC at the University of Crete (NHMC, 2006) 

from in vector format. After appending the English formation names, the data were 

projected from the original Greek Grid projection into the target projection of this 

study. This involved conversion of the geographic coordinate system and datum as 

well, because the original datum and GCS were in GGRS 1987 based on a GRS80 

ellipsoid with central meridian at 24° E (NHMC, 2006).  Next, the data were 

converted from vector to raster format with 15m spatial resolution, keeping the 
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geological code as z value. Finally the data were converted into ascii format. When 

interpreting results, the (unrealistic) abrupt change in cell values at former polygon 

boundaries must be kept in mind. 

 

Soil type information was derived from two sources. Firstly, general soil type data 

were acquired via ITC from Wageningen University in form of a paper map. This 

“soil type WU” data is dated 1986 and original resolution is specified as 1:100,000, 

i.e. ~1 km cell size (Wageningen University, 1986). The data were digitized 

onscreen, projected into the target projection, resampled to a 15 m raster grid and 

converted into ascii format. When interpreting results, the (unrealistic) abrupt change 

in cell values at former polygon boundaries should therefore be kept in mind. 

 

A more detailed set of soil variables was downloaded from the European Soil 

Database (ESDB) v 2.0 Raster Library 1x1km (EC-DGJRC, 2006). These variables 

are Dominant Parent Material, Depth to Rock, Volume of Stones and the full soil 

code of the Soil Typological Unit (STU) from the World Reference Base (WRB) for 

Soil Resources. As the provided grid however failed to cover all land areas along the 

shoreline, the original polygons delineating the Soil Mapping Units (SMUs) were 

extracted from the ESDB v 2.0, which is in vector format, owned by the European 

Soil Bureau Network and has been made available for this research purpose to ITC 

(ESBN, 2004). Surprisingly, the current vector database appeared to lack data for 

some soil variables, whereas the raster database included these. It was therefore 

decided to use the polygon SMUs as framework, to modify polygons where they 

represented shoreline by using the SRTM DEM as reference, and to manually fill all 

polygons with the respective nominal values provided in the raster library. Thus 

NoData areas were minimized in extent, shorelines for this variable matched the 

others used in this study, and information content was maximized.  

All soil variables extracted from the ESDB share the following characteristics: they 

were generated at a scale of 1: 1,000,000 and values were usually estimated by 

expert judgement interpreting and synthesizing national and regional larger-scale 

maps. Given the coarse scale of the ESDB data, precision of variables is considered 

weak and SMU polygon delineations do not fully reflect the soil heterogeneity . Most 

of the data dates back to the 1980s (ESBN, 2007). Additional quality information 

(purity and confidence level) is provided in the database. For the ESDB variables 

used in this study, reference is therefore made to this source (ESBN, 2007), as it is 

identical to the quality maps associated with the specific thematic “Dominant Value” 

maps of the ESDB Raster Library.  

Upon completion of the pre-processing steps detailed above, all four soil variables 
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were projected into the target projection, converted to raster format with 15m grid 

cells and finally converted into ascii format.  

 

A rudimentary dominant land use variable was downloaded from the European Soil 

Database (ESDB) v 2.0 Raster Library 1x1km (EC-DGJRC, 2006) and subjected to 

the same pre-processing procedure as the soil variables from this source (described 

earlier).  

2.2.4. Pre-processing of NDVI variable 

To generate a vegetation variable, the free ten day synthesis product VGS-S10 was 

obtained via ITC from VITO Belgium (CNES, 2007). Only the Normalized 

Difference Vegetation Index (NDVI) data contained in that product was used in this 

study. Note that the ten-day-synthesis data are maximum value composites, i.e. cells 

show the highest value a given pixel displayed during these ten days, mostly to 

ensure minimisation of cloud coverage effects. NDVI is a ratio index that exploits 

the high reflectance of plant biomass in the Near InfraRed (NIR) region compared to 

the fairly low reflectance in the Red (R) region of the electromagnetic spectrum: 

NDVI = (NIR-R) / (NIR+R) (Jensen, 2005). Generally speaking, positive NDVI 

values indicate green vegetation, negative values indicate water surfaces, near zero 

values indicate surfaces dominated by soils, low positive values represent either 

coniferous (if absolute values high) or brown vegetation (if absolute values low) 

(Jensen, 2005).  

The aim was however, to generate a vegetation variable that would be both 

representative and distinguish different vegetation types. To achieve this, the 252 

ten-day-synthesis data sets covering the time period from April 1998 to March 2005 

were stacked (using a batch file in ERDAS) to extract vegetation profiles for 

classification. Note that layer 4 and 7 proved to be clearly displayed, which was 

manually corrected: layer 4 was shifted +1000m and layer 7 -1000m along the X 

axis; all Y values remained unchanged. Next, the resulting multi-band image was 

classified using ISODATA with convergence threshold set to 1, and the number of 

iterations slightly higher than half the number of chosen classes. To determine an 

optimum number of classes, signature separability (in Euclidean distance) was 

calculated for each classified image in ERDAS’ Signatur Editor and plotted in Excel. 

It was found that classification of this NDVI variable for Crete (including a 5km 

coastline buffer) would be both detailed enough and most robust if 30 classes were 

distinguished (Figure 3). 
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Figure 3 Determining optimum number of NDVI classes 

Higher separability was only obtained for < 13 classes (including coastal waters!), 

which would have been too coarse. By copying the results from the Signature Editor 

in ERDAS into MS EXCEL, the mean 7-year-NDVI annual values for each of these 

vegetation classes could be plotted. 

 

 

Figure 4 Classified seven-year-mean seasonal NDVI values 
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To preserve clarity, the figure above shows only some of the 30 classes. By visually 

analyzing and grouping classes with similar seasonal behaviour (shape) – albeit at 

different absolute NDVI levels – this classification could be improved further (note 

for instance the pink and green ‘groups’; Figure 4 will be referred back to in the 

chapter 4.4). For the objectives of this study however this was not essential. 

Likewise, it was outside the scope of this project (and fieldwork) to assign vegetation 

cover names to these classes e.g. by in-situ validation, as well as to perform class-

specific temporal trend analysis, which these data provide an excellent starting point 

for.  

2.2.5. Pre-Processing of Land Cover Variables 

Two different land cover variables were selected for this study; only one of them 

however – CORINE – was available for the complete study area and obtained via 

ITC from the European Environment Agency (EEA, 2006). CORINE is the result of 

a collaborative effort of 12 EU states. It is based on satellite data (Landsat TM, MSS 

and SPOT XS) as well as auxiliary data in form of national topographic and thematic 

maps, statistical land cover information and aerial photographs. These data were 

merged applying expert knowledge and following a standard procedure. Although 

input data varied in scale, a common working scale of 1:100,000 was adopted in the 

CORINE product with the smallest unit at least 25 ha in size (EEA, 2000). 

Procedures for updating CORINE are specified, but given the heterogeneity of initial 

sources no specific actuality information is available for the area of Crete. The 

nomenclature of CORINE comprises three levels. This study uses only the third and 

most detailed one. 

As CORINE was provided in vector format, the following pre-processing steps were 

performed: 1) appended nomenclature to shapefiles, 2) projected data from its initial 

projection (ETRS1989) into target projection, 3) converted into raster format with 15 

m resolution, 4) extracted only land areas, 5) converted data into ascii format. When 

interpreting modelling results, the initial scale and polygon structure of CORINE – 

and the resulting generalization and abruptness should be kept in mind.  

 

The second land cover variable used in this study  - although only for part of Crete – 

is an ASTER-based land cover classification generated from original Level_1A data. 

This variable required intensive pre-processing, which is outlined in the following 

paragraphs. Imagery was obtained via ITC from NASA’s Distributed Active Archive 

Center (NASA, 2007). Although more were obtained and processed, only the 

following four ASTER granules – two pairs – could be mosaiced with sufficient 



37 

spectral accuracy and eventually be used in this study:  

 

AST_L1A_00305142006091614_20061127102622_10621 

AST_L1A_00305142006091623_20060825052229_20539 

AST_L1A_00306042002091837_20061127102555_9891 

AST_L1A_00306042002091845_20061127102607_10406 

 

While the data for the ‘main’ part of Western Crete is dated 2006, the most recent 

data covering the ‘far-west’ part of Western Crete dates back to 2002. Although 

early summer is not an optimal time to acquire images for a land cover classification 

due to vegetation dynamics (Lewinski, 2005), the seasonal mismatch of little more 

than two weeks (mid-May vs. early June) was fortunately small – and no better 

alternative cloud free imagery available.  

As a thorough analysis of the fairly wide overlap area showed, changes in surface 

reflectance between summer 2002 and 2006 were minimal – a precondition for the 

joint unsupervised classification intended.  

The ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) 

sensor consists of three instruments (for details see Abrams, 2000), of which only 

two were used in this study: the Visible and Near InfraRed (VNIR) comprising 4 

bands with 15m resolution; band 3B however, the backward looking channel in the 

near infrared spectrum, which provides stereo vision and thus the potential for 3D 

imagery, was discarded. Although the 6 bands recorded in the Short Wavelength 

InfraRed (SWIR) spectrum at 30m resolution, were found to not improve land cover 

classification of urban areas (Stefanov and Netzband, 2005), for natural vegetation 

areas all nine bands have been used successfully ( Marcal et al., 2005). Although 

some land cover studies have used all 14 bands (Wang and Zhang, 2006), Thermal 

InfraRed (TIR) bands were not considered in this study, because (a) its low 

resolution of 90m and (b) thermal irradiation conditions tend to exhibit stronger and 

more frequent temporal changes than VNIR and SWIR reflectance patterns 

(unnecessarily jeopardizing the representativeness of the land cover classification).  

 

As shown in Table 2 only one of band 5 and 6 or 7 and 8 could have been used due 

to the high inter-band correlation. To preserve the potential to derive complete and 

meaningful ground feature signatures at a later stage (which however did not 

materialize), it was decided against this option.  
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Table 2 Correlation Matrix of ASTER bands (VNIR and SWIR) 

Level 1A imagery was obtained in order to allow orthorectification after images had 

been converted into the target projection. Adjusting for vertical displacements was 

deemed necessary given the maximum elevation of above 2000 m in the study area 

and a generally rugged terrain. This step was performed in Leica’s Photogrammetry 

Suite using the DEM interpolated with cubic convolution to 15m resolution. Next, 

the two granules from each year (2002 and 2006) were mosaiced together which 

posed no problem as they were both taken during the same overflight. Following the 

stacking of layers, manual horizontal shift corrections between bands were made (in 

ArcMap 9.1) using a detailed road layer as reference. To mosaic both paired 

granules, the relative atmospheric correction approach was chosen (Jensen, 2005), as 

data on exact atmospheric conditions for an absolute atmospheric correction method 

such as 6S (Vermote et al., 1997) were not available. After identification and 

delineation of Pseudo-Invariant Features (PIFs), all bands were unstacked once more 

and each band of the 2002 imagery multiplied with the PIF coefficients to adjust 

reflectance levels to the master image (Appendix I). 
Finally, after stacking all mosaiced bands once again, the image was classified using 

the ISODATA algorithm. The optimum number of classes (35) was found following 

the procedure described above for the NDVI variable. The class with the best 

minimum (and accidentally best average) Transformed Divergence (TD) distance 

value was chosen (see Appendix J). After clipping the classified image to the 

common extent of all predictors and visually identifying and assigning NoData 

values to all clouds, the file was converted into ascii format for input into Maxent. 

ASTER imagery was prepared in a similar fashion for the most of Central Crete as 

well;  

2.2.6. Pre-Processing of Climate Variables 

Climate variables for this study were obtained from two main sources. The first 

group contains the variables Cloud coverage, Potential and Actual 
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Evapotranspiration. These data were received as offline content via ITC from USGS 

(NIEHS, 2007). They form part of the Global Climate Database, which contains 

interpolated grids of climatic variables based on 16,000 to 20,000 stations worldwide 

recorded between 1931 and 1960 and published in the November 1991 Research 

Report RR-91-18 by the International Institute of Applied Systems Analyses 

(IIASA). The database was last updated in 1996 (NIEHS, 1996).  

Cloud coverage is defined as “the actual number of bright sunshine hours over the 

potential number” (NIEHS, 1996) and therefore a % value, which increases with 

cloudiness. Potential evapotranspiration is defined as the ability of the atmosphere to 

remove water from the surface by evaporation or transpiration, while actual 

evapotranspiration represents the amount of water actually removed, i.e. this variable 

considers water supply too. Values for both are recorded in mm.  

As these data were provided in vector format as a very small-scale interpolated grid 

(only 4 data points covering the study area!), additional pre-processing was 

performed: 1) projected the data into target projection, 2) clipped a circular area 

around Crete which included about 100 data points on neighbouring landmasses 

(note: for sea areas no data was available) and finally 3) applied a similar 

interpolation technique as the one used during creation of this database: a regularized 

spline interpolation with the weight parameter at default 0.1, the number of 

neighbouring points to include set to 30 and a final resolution of 1 km. This 

interpolation method is considered suitable for variables changing gradually over 

large distances, as it passes exactly through the provided points while minimizing 

curvature of the surface (ESRI Inc., 2005a). The resulting surface was then 

resampled to 15m prior to extracting land areas only and converting these into ascii 

format. When interpreting the result / significance of these variables as model input, 

the mediocre accuracy associated with this interpolation should be taken into 

account.  

 

The second group of climate variables was downloaded from the Worldclim 

database (Hijmans et al., 2007). This group contains the selected variables Mean 

Annual Temperature, Minimum Temperature of Coldest Month, Temperature 

Seasonality, Isothermality and Annual Precipitation. As the previous climate 

variables, these data were derived from high-resolution interpolation of terrestrial 

stations (i.e. not remote sensing data). The selected data were provided in raster 

format with 30 arc seconds resolution (~1 km grid cells), referenced to Lat/Long 

degrees and the WGS84 datum. The data is a synthesis of several other climatic 

databases. All values are based on monthly measurements taken mostly between 

1960 and 1990 from ~15,000 to ~48,000 stations worldwide. Hijmans et al. (2007) 
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used thin plate smoothing splines as well as a DEM derived from the SRTM 

(U.S.G.S.) to generate the final interpolated climate grids. Temperature and 

precipitation variables consist of original monthly data. The other bioclimatic 

variables represent annual trends derived from these original data. Note that 

temperature values must be multiplied by 0,1 in order to retrieve the correct value in 

°C. Temperature Seasonality equals the standard deviation * 100 of the annual 

temperature values. Isothermality relates Mean Diurnal Range to Temperature 

Annual Range, i.e. expresses the similarity of daily to yearly variations in 

temperature. The equation applied was: ‘Mean of monthly (max temp - min temp) / 

(Max Temperature of Warmest Month - Min Temperature of Coldest Month) * 100’ 

(Hijmans et al., 2005).  

 

Unfortunately, the provided grids did not cover all land areas completely, which 

would have resulted in the exclusion of several species observation sites when 

modelling with these layers. Some pre-processing was therefore necessary for the 

purpose of this study: 1) clipped out study area 2) if necessary, calculated annual 

average values from monthly layers, 3) projected data into target projection using 

NN and accepting default cell size (any smaller cell size proved to be too processing 

intensive in the next step; “new” cells potentially shifting up to ~500m horizontally 

was thus accepted), and 4) carried out Inverse Distant Weighted (IDW) interpolation 

with power set to 2 (default), number of points to be considered set to 5 and a 

specified vector file acting as barrier during interpolation. The IDW method was 

chosen because the provided climate grids showed considerable local variation, and 

the intention was to model the coastal vicinity as close as possible to the local values  

while preserving the exact values of the provided grids – most other methods would 

yielded too smooth interpolated surfaces or altered existing values (ESRI Inc., 

2005b). To ensure the latter, a vector file was created with line features running 

parallel to the coastline. When used as a barrier file, interpolation was restricted 

successfully to the Nodata coastal land areas using only the points located no more 

than ~ 1 km away from the coast. To avoid consideration of relatively distant coastal 

point, their number was limited to 5 only. During interpolation, the size of cells with 

interpolated values was maintained in order to avoid ‘false precision’.  Finally, all 

data were turned into integer format and resampled to 15m cell size, before the land 

areas were extracted and converted into ascii format.  
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2.3. Modelling Technique 

2.3.1. Maxent as Statistical Model 

This chapter describes the main principle and characteristics of Maxent and justifies 

why Maxent – developed by the machine learning community – was the statistical 

model of choice in this study.  

Using the predictor values at the provided species presence locations as well as 

(default:) 10,000 randomly chosen background pixels from the predictor grids, 

Maxent computes many probability distributions across all grid cells. The algorithm 

used follows the maximum entropy principle (closest to uniform), as it includes as 

many ‘options’ as possible into the probability distribution while simultaneously 

excluding all ‘options’ known to be outside the target distribution – as specified by 

certain constraints. Constraints are quantified as ‘features’ in Maxent. They represent 

the few characteristics known about the target distribution. The process is iterative 

and starts with assuming a uniform probability distribution. As each feature and its 

relative weight gets sequentially updated, the ‘gain’ increases exponentially at 

suitable locations. A ‘gain’ value of 1.8 thus indicates that the distribution fits the 

training sample points ~ 6 times [=exp(1.8)] better than a random distribution. 

Eventually the distribution is chosen, which has the highest entropy and meets the 

provided constraining criteria. Six different features are available; some express the 

state of single variables, others express their interaction.  

By default only those features are activated for which the provided number of 

presence records is (automatically) calculated to be empirically sufficient. The effect 

of these features is that the output probability distribution is forced to remain 

structurally identical (in terms of statistics) to the distribution of environmental 

average values measured at the input species observation points. In order to relax this 

constraint however, ‘regularization’ is a recommended option. This tool reduces the 

iterative gain and helps to avoid overfitting of the model especially if few presence 

records are available. A higher regularization value leads to a wider predicted 

distribution. To better control predictions outside the range of the training data, a 

‘clamping’ technique is applied. Maxent can handle categorical input data by using 

background pixel counts instead of values to calculate feature averages. It also 

calculates the relative importance of each predictor using Jacknife (for alternatives 

see (Verbyla and Litvaitis, 1989). Output is continuous and provided by default as 

‘cumulative’, i.e. cell values indicate the percentage of other cells with equal a equal 

or lower (raw) probability value. Cells which for which not all predictors have a 

value, are assigned NoData values (Phillips et al., 2004, Dudík et al., 2004, Phillips 
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et al., 2006).  

Maxent was chosen as statistical model primarily because its relative insensitivity to 

noisy data and small sample size (owing to the generative not discriminative 

approach), its ability to handle categorical data and to model interactions (Phillips et 

al., 2006) as well as its promising performance in similar studies (Elith et al., 2006, 

Hernandez et al., 2006, García Márquez, 2006).  

2.3.2. Modelling Procedure 

To address research questions (1a,b) the dataset for all of Crete (75 points) was 

divided into training (75%) and test (25%) presence points. Background points 

(‘pseudo-absences’) were randomly sampled from the full study area, because 

predictor extent covered no other (irrelevant) land masses and (geographic) provided 

presence records covered the geographic extremities. Given the small sample size 

however, Maxent was run five times (all values at default of Maxent version 2.3) on 

both training and test data. Next, using only the top one-third of strongest predictors 

– defined in terms of strongest added average training gain when using built-in 

Jacknife – another five runs were performed for comparison with previous results. 

 

To address research questions (2a,b), only fieldwork-‘enhanced’ occurrence sites 

were selected, partitioned (25% for testing) and run together with all predictors 

(clipped to Western Crete). Given an even smaller sample size (46 points), seven 

partitions were created and the five best selected. For visualization purposes, another 

Maxent run was performed (default settings as before) using a non-partitioned 

dataset. Note that when using the dataset for Western Crete, random points were only 

sampled from within a bounding box, which included all 46 ‘enhanced’ presence 

sites and coincided with available ASTER imagery (extent in target projection: top 

3760010m, bottom 3700010m, left 4490000m, right 4575350m; see also Figure 2). 

Finally, the ASTER-based land cover variable was included as predictor and five 

(best out of seven) partitions generated using (a) species occurrence sites as before 

and then (b) occurrence ‘plots’ instead of ‘points’ (see chapter 2.24).  

 

Note that predicted distributions for research questions (1a,b) were calculated using 

not the same number of presence sites for all predictors. Unfortunately, NDVI data 

and all WorldClim variables from Hijmans et al., 2007, failed to cover all of South-

Eastern Crete. However, as NDVI was the only predictor not capturing the as the six 

occurrence sites located there, the inconsistent contribution of this single predictor 

was accepted. The complete omission of these six sites would have caused a 
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significant loss in coverage of geographic extremities for all other predictors, thus 

raising the likelihood of extrapolation errors.  

 

To address research questions (3), only a descriptive analysis was carried out, 

because unfortunately it was not feasible during fieldwork to also collect sufficient 

ground truth data for a proper evaluation of both classified NDVI and ASTER land 

cover variables, based on a confusion matrix and e.g. Kappa statistics. These data 

have instead been subjected to an overlay analysis with the CORINE predictor, thus 

inferring preliminary labels for both unsupervised classifications. Additional 

information on apparent habitat preferences of P. erhardii were derived from simple 

frequency statistics of other ground related predictor layers. All variables were 

analyzed using their total extent across Crete with the exception of the ASTER 

predictor. All counts were related to the respective ‘background’ land area (all of 

Crete, Western Crete respectively), thus taking into account the element of chance.  

2.3.3. Evaluation Methods 

Each modelled prediction was evaluated by testing (1) if probability values at test 

(and training) localities were predicted better than random (significance) using a 

simple binomial z / t statistic (Congalton, 1991). In place of Kappa (Cohen, 1960), 

the equally threshold-dependent but more robust (2) True Skill Statistic (TSS) 

(Allouche et al., 2006) was employed to assess if predictions were better than 

random (significance). Finally, the (3) threshold-independent Receiver Operator 

Characteristic (ROC) was employed, which yields the Area Under Curve (AUC) 

value as single indicator of model performance (Hanley and McNeil, 1982). Kappa 

and AUC are commonly applied to species distribution models (Fielding and Bell, 

1997, Hirzel and Guisan, 2002, Graham and Hijmans, 2006, Phillips et al., 2006), 

whereas TSS is a recent suggestion (Allouche et al., 2006).  

 

Although research on selecting the optimal threshold for binary predictions of 

presence-only models is currently very active, no dominant rule has emerged yet for 

this task (Phillips et al., 2006, Liu et al., 2005, Hirzel et al., 2006). Objective 

approaches like maximum Kappa (Guisan et al., 1998) are as frequent as subjective 

ones based on an arbitrary threshold, e.g. 0.5 or 95% specificity. A comprehensive 

overview of alternatives is provided in Liu et al., 2005, who conclude that the above 

approaches were inferior to most others. Hence, this study opts for the ‘Sensitivity-

Specificity-Equality Approach’ (Cantor et al., 1999). It determines the optimal 

threshold by minimising the absolute difference between computed sensitivity and 
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specificity. The associated ‘cumulative gain’ value was looked up in the respective 

background file which was produced for each distribution using the Sample tool in 

ArcMap. Background points were generated in MiniTab 14.2 (MiniTab Inc., 2005) 

for all of Crete (n=3486), because presence sites covered the periphery (mean 

distance of background points: 775 m, SD =510 m) ensuring minimal extrapolation. 

For Western Crete (n=1112) a subset was clipped using the extent specified in 

chapter 2.3.2. Binary predictions were based on the average cumulative threshold of 

five runs. Confusion matrices were populated with counts from the test (and also 

training) dataset as presences, and random background points as ‘pseudo-absences’ 

(Graham and Hijmans, 2006).  

 

Cohen’s Kappa is one measure that can be derived from the confusion matrix. As a 

validation tool (i.e. when the ‘truth’ is known), it states the overall accuracy of a 

prediction once the element of chance has been removed (Cohen, 1960, Congalton, 

1991, Liu et al., 2005, Guisan and Hofer, 2003). Otherwise, Kappa can serve as a 

tool to assess reliability of prediction in terms of relative agreement. A value near 0 

indicates no discrimination (agreement by chance); a value of 1 represents perfect 

discrimination (agreement); a value of > 0.6 is considered ‘good’ and >0.8 as 

‘excellent’ (Graham and Hijmans, 2006). Kappa is relative tolerant to zeros in the 

confusion matrix and considers both omission and commission errors in one 

parameter.  

However, Kappa is unimodally dependent on prevalence, i.e. on the proportion of all 

presences in the full validation dataset (Fielding and Bell, 1997, Allouche et al., 

2006). This would have been a problem in this project, because known species 

presences were few (training: ~ 50; test: ~15) compared to the high number of 

random background points (>1000), which were deemed necessary for a reliable 

confusion matrix given the large study area. Hence, the TSS (Allouche et al., 2006) 

was computed instead of Kappa. It is defined as TSS = sensitivity + specificity – 1. 

In contrast to Kappa, TSS values can be used to compare prediction performance 

independent of both validation dataset size and the prevalence contained therein, 

while still featuring the same strengths of Kappa: full consideration of sensitivity, 

specificity and chance  (Allouche et al., 2006). The range of TSS values and their 

‘translation’ is identical to Kappa. The features of TSS were also advantageous in 

addressing research question 2b. Note that if background sampling is adjusted to 

ensure a prevalence of 50%, Kappa is in fact identical to TSS (Allouche et al., 2006, 

Hirzel et al., 2006).  

 

As ROC (AUC) analysis (Hanley and McNeil, 1982) is independent of both 
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threshold setting and prevalence, it is a highly effective method for assessing the 

performance of ordinal score (i.e. presence-only) distribution models (Allouche et 

al., 2006). The AUC is derived by using all possible thresholds to plot sensitivity 

(the probability that a model correctly classifies a presence) versus specificity (the 

probability that a model correctly classifies an absence). A value of 1 stands for 

perfect discrimination, if above 0.75 the model is rated ‘good’, while a value of 0.5 

indicates a performance not better than chance (Graham and Hijmans, 2006). The 

AUC represents thus a single number to denote model performance at all threshold 

levels (Fielding and Bell, 1997).  

However, as presence-only models lack ‘true absences’, specificity can not be 

calculated rendering AUC inapplicable – unless a conceptual modification is 

accepted and ‘fractional predicted area’ is used instead of true commission (Phillips 

et al., 2006). The same 3864 background points (1112 in the West) created for TSS 

evaluation were hence used as ‘pseudo-absences’. All calculations were made in the 

ROC Plotting and AUC Calculation Transferability Test v 1.3 software (Schröder, 

2004), which employs bootstrapped confidence intervals calculated with the 

percentile method described in Buckland et al., 1997. Significance was tested against 

AUC = 0.5 using the built-in z score functionality at 95% confidence level. The 

AUC values generated by Maxent (with a larger and different background sample) 

facilitated a useful comparison. Relative predictor importance was investigated based 

on Maxent’s built-in Jacknife functionality. 

3. Results 

3.1. Research Question 1a:  Prediction Aross Crete 

Perhaps surprisingly, a model can be fitted to ‘explain’ the curious observed 

presumable distribution of P. erhardii across Crete (Figure 5). The map was 

produced using all qualified occurrence data (for visualisation purposes only). Note 

that all accuracy assessments in this study are based on modelled predictions using 

partitioned occurrence data.  
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Figure 5 Probability distribution across Crete 

Visual analysis suggests very low habitat suitability (more precisely: potential 

species distribution) for almost the entire Central and Eastern parts of Crete. It is 

important to note that poor suitability is also predicted for some areas in Western 

Crete. It is therefore less likely that the prediction suffers from a dominant variable, 

whose West-East gradient has introduced a drastic spatial autocorrelation bias. All 

areas coloured yellow and red are considered suitable habitat when applying the 

binary threshold of 27.33 (cumulative value) found to be optimal in the previous 

chapter. Although many coastal areas feature highest suitability – including many 

islets in the East – there are significant stretches of coastline displaying very low 

suitability. The very strong probability in high altitude areas of Levká Orí may be an 

artefact of site selection bias, as sampling density was locally high and points 

coincided strongly with a particular CORINE class. Predicted habitat suitability is 

generally highest in ‘contiguous patches’ in the West and isolated coastal areas often 

only a few kilometres in size. 

 

All five partitioned distributions predict values at test locations significantly better 

than random (one-tailed t-test for one proportion, averages: z =4.8380, p =0.0030). 

A t-test was required as n < 30 (with normal distribution). Background points were 

kept identical for each run (mean background cumulative value 11.2; proportion 

classified as presence 14.3 %). 
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Table 3 Evaluation of distribution across Crete 

As expected, Kappa values are heavily affected by the low prevalence of < 1%, 

ranking barely above 0 even for the training dataset. The non-affected TSS rates the 

models performance (only) ‘moderate’ (TSS = 0.5701), based on the average of five 

partitions and the given threshold. This result however still differs significantly from 

chance with TSS = 0 (one-tailed t-test at 95% CI, averages: t =4.838, p = 0.003). The 

model performed very well on this test data given an average AUC of 0.8574. Note 

that AUC values produced with ROC-PLOT were nearly identical to the ones 

generated by Maxent. As expected, model performance in all respects is generally 

better when evaluated against training data.  

In answer to hypothesis (1a) a one-tailed t-test was performed on the five training 

partitions which together hold an average regularized training gain of 1.858with H0: 

cumulative gain <= 1.5 and HA: cumulative gain > 1.5. The result allows to reject 

hypothesis H0 and to accept HA (t = 5.34 and p = 0.003 at 95% CI). 

3.2. Research Question 1b: Strongest Predictors Aross Crete 

By far the most important predictor in 4 out of 5 random partitions is the NDVI 

variable, which in itself accounts for half of the overall training gain and would 

reduce the gain the most if omitted (Figure 6). While land cover (CORINE) and 

altitude rank next in terms of unique information carried, cloud cover and actual 

evapotranspiration contribute each slightly more to the overall gain. Note that this 

identification of the six most important variables is based on un-partitioned 

occurrence data, the idea being to utilize the maximum information available.  
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Figure 6 Jacknife results on variable importance across Crete 

 

Figure 7 Variability in ‘cumulative gain’ of predictors across Crete 

In addition to absolute gain it is essential to consider predictor variability (Figure 

7). As perhaps expected, topographic variables like NDVI, CORINE, altitude and 
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geology display a much higher standard deviation (in the five test partitioned runs) as 

climate related predictors. In fact, the individual gain values for geology, CORINE 

and altitude predictors turn out to be statistically not significant when validated on 

the test dataset (two-tailed t-test; with HO: gain = 0 and HA: gain ≠ 0;  95% CI, t = 

.03, .06, -.26 respectively; p = .979, .956, .807 respectively). All other predictor 

gains however (and all predictors when using training data) are statistically 

significant – including NDVI. The predicted range preferences of P. erhardii within 

the ecological space spanned by these variables is shown in the response curves in 

Appendix A.  

Five new partitions using only the six strongest predictors (as mentioned above plus 

‘soil type WRB’) yield a regularized training gain of 1.502. This value is 

significantly lower than 1.858, i.e. the one obtained when using all predictors (H0: 

cumulative gain >= 1.858 and HA: cumulative gain > 1.858; upper bound 99% CI = 

1.563, t = 92.12 and p = <0.001).  

 

Table 4 Evaluation of distribution across Crete using top six predictors only 

As NDVI (individual training grain 0,9366) characterizes primarily ground 

vegetation, hypothesis (1b) HO must be rejected and HA accepted.  With reference to 

the extension of research question (1b), it can be concluded that the top one-third of 

predictors tested here capture about 80% of the response variable in terms of 

regularized training gain. The resulting probability distribution is shown in 

Appendix B. 

3.3. Research Question 2a: Potential of ASTER Imagery 

The effect of adding the ASTER-based land cover variable to the (full) suite of 

predictors can visually be assessed by comparing Figure 8 and Figure 9. Note that 



 

50 

both distributions were generated using all 46 fieldwork-‘enhanced’ occurrence sites, 

i.e. without considering occurrence sites from outside this region (black and grey 

dots on map). The predicted distribution differs therefore from the previous ones. 

For an answer to research question 2a and 2b however, this is not relevant. 

 

Figure 8 Probability distribution in Western Crete without ASTER predictor 

 

Figure 9 Probability distribution in W. Crete with ASTER predictor 

The distributions differ in both map output and statistical performance (TSS and 

AUC). Visual analysis suggests that the inclusion of an ASTER-based land cover 

variable results in a more concise delineation of areas featuring high probability 

values. This is logical in the sense that each occurrence point can only relate to a 

15m pixel in this layer, whereas for all other layers, an occurrence point relates de 



51 

facto to a 90m or 1km pixel (or a rasterized, fairly large polygon). There is thus also 

a collateral loss in probability for a high number of neighbouring pixels, causing an 

overall expansion of low probability areas. Note however that many ‘red’ core areas 

with no occurrence point inside, remain at their location. This indicates a remarkably 

strong environmental similarity to known occurrence sites. 

Figure 10 Effects of ASTER inclusion on relative variable importance 

As shown in Figure 10, the ASTER-derived land cover variable turns out to carry as 

much unique information as the NDVI variable. When used as the only predictor, it 

ranks second after NDVI and is able to generate about 30% of the ‘cumulative gain’ 

achievable when all variables are used.  

For the binomial tests of significance, the threshold was derived again using the 

‘Sensitivity-Specificity-Equality Approach’ (Cantor et al., 1999) and found to be 

28.51 and 31.26, respectively.  

Binomial tests on both distributions indicate that average values at test sites are 

significantly higher than the random distribution (one-tailed t-test with HO: gain <= 

18.6 and HA: gain > 18.6;  95% CI, averages: t = 2.080; p = 0.0320). TSS analysis 

reveals that models predict the test sites only half as good as the training sites with 

both models ranking ‘poor’ on test sites (TSS = 0.30; 0.25), but still significantly 

above chance (one-tailed z-test, average z / t > 4.5, p < 0.001). The good 

performance of both distributions according to ROC analysis (average AUC = 0.70; 

0.76) however, most likely suffers from the low number of partitions, in particular 

the distribution without the ASTER-based variable, as indicated by the higher 

Maxent AUCs (which use a larger background) and the extremely high standard 

error of AUC on test data, which causes the significance level to touch the border to 

pure chance (lower bound 95% CI = 0.50 AUC). Interestingly, the inclusion of the 

ASTER predictor increases the significance of the AUC, but leads to a lower 
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significance of the TSS. This may constitute evidence that the latter distribution is 

overfitted rather than suffering from a low number of partitions (however, TSS is 

based on two different background data ensuring an optimal threshold). 

Note the excellent average AUC value for training samples (AUC = 0.893; 0.928).  

 

Table 5 Evaluation of distribution for Western Crete without ASTER 

 

Table 6 Evaluation of distribution for Western Crete with ASTER (points) 

From these results it can be concluded that adding the ASTER-based land cover 

variable significantly increases both model fit (unpartitioned distribution: regularized 

training gain = 1.27 up from 1.01) and performance (AUC = 0.9242 up from 

0.8942). The Null hypothesis of research question 2a) must thus be rejected and HA 

accepted.  
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3.4. Research Question 2b: Replacing Occurrence Points with ‘Plots’ 

Based on visual comparison of Figure 8 Probability distribution in 

Western Crete without ASTER predictor (above) with Figure 11 (below), a 

spatial consolidation of probability areas can be observed at all levels: while 

scattered low probability patches disappear, core areas grow more contiguous in 

shape. This effect was expected because the ‘plot’ approach aims at capturing 

apparently suitable habitat locations in a more representative way than by a simple 

XY point location. Qualified surfaces in the immediate surroundings are thus 

included in the model input. See Appendix E for a direct comparison clip of all 

modelled distributions. Note that the calculated optimal binomial threshold for this 

distribution is 46.76; predicted presences are thus marked by ‘orange and warmer’ 

colours (not yellow).  

 

Figure 11 Probability distribution using  ASTER predictor and ‘plots’ 

Replacing single point occurrence data with a 10 point occurrence ‘plot’ situated in 

‘natural habitat’ as identified in-situ, increases the regularized ‘cumulative gain’ for 

this distribution model to 1.51 up from 1.27. While NDVI remains the most 

important predictor, it does not contribute to the additional gain and also stands no 

longer apart in terms of much unique information carried (just like all other 

predictors). The ASTER-derived land cover predictor performs in much the same 

way. While continuous predictors including altitude, seasonality and isothermoality 

triple their individual contribution and precipitation and temperature even increase it 

about tenfold(!), most categorical predictors remain constant (Figure 12).  This 

result is somewhat unexpected and will be discussed in chapter 4.3. 
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Q2a: using 1 single point as presence Q2b: using 10 points as presence ‘plot’ 

Figure 12 ‘Plots’ replacing ‘points’: effect on variable importance 

All results obtained from the binomial test and TSS are found to differ very 

significantly from random (all z values > 30) and extremely well fitted (AUCtest = 

0.97). See Table 6 for more statistic details. Although the Null hypothesis 2b) must 

be rejected and HA be accepted, this result requires thorough interpretation (see 

chapter 4.3). 

3.5. Research Question 3: Surface Cover Preferences 

As pointed out in chapter 2.3.2, analysis of P. erhardii’s surface cover preferences is 

constrained to simple descriptive statistics in this study, primarily because 

insufficient ground truth could be obtained during fieldwork for a supervised 

classification of the most important layers NDVI and ASTER. Prior to investigating 

these two predictors further, a general overview of observed trends is provided. 

In Table 7 only those classes of each predictor are listed which have received a 

remarkably high (or very low) number of presence records; the right column shows 

how much of the total land mass of Crete is covered by the respective class and 

therefore allows to consider the element of chance. See Appendix G for the 

complete frequency table. 
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Table 7 Selected count statistics of ground variables 

Note that for a site-specific analysis aiming at the most frequent combination(s) of 

preferred predictor classes, a canonical correspondence analysis could be carried out.  

Given the relatively strong concentration of presence counts in a few NDVI and 

ASTER classes – and in absence of sufficient ground truth –, both layers were 

overlaid with the CORINE predictor in order to assign preliminary class description.  

 

 

Figure 13 Overlay analysis of NDVI with CORINE predictor 
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As shown above, NDVI class 18 (covering only 4% of total Crete but containing 

17% of all presence records) matches the CORINE class 323 (“sclerophyllous 

vegetation”) in 9 out of 12 cases. As this class is present in both the West and far 

Eastern parts of Crete but hardly in the Centre, it should receive special attention in 

any further analysis. Note however, that this overlay is based (only) on a comparison 

at presence sites; a verification of this match using other points sampled from the 

background as well as the full consideration of the fieldwork-derived ‘natural habitat 

polygons’ instead of just the central point is recommended, but beyond the scope of 

this study.  

It is an important result that about two-thirds of all known presence sites fall into 

only two CORINE classes (323 and 321), and that the same classes also receive the 

most counts when overlaid with the NDVI and ASTER variables. For a Pivot table 

showing the strength of the overlay of both NDVI and ASTER with CORINE in 

numeric detail see Appendix H. 

 

Figure 14 Overlay analysis of ASTER with CORINE predictor 

Note that the ASTER-based land-cover predictor – despite it being a temporal 

snapshot only – is likely to more accurately show the outline of most classes at least 

for those with low vegetation cover. Some mismatch may thus be a consequence of 

the limited resolution of CORINE data rather than a true disagreement regarding 

surface cover. ASTER class 34 hosts the most presence sites in Western Crete and 

corresponds 6 out of 10 times with CORINE class 321 “natural grassland”, followed 

by ASTER class 30 (and 33) which relate 4 out of 9 (5 out of 7) times to CORINE 

class 323 “sclerophyllous vegetation”.  
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P. erhardii presence records coincide significantly with ‘open areas’, i.e. the most 

frequent NDVI class among presence sites belongs to the lowest third of all NDVI 

classes generated for Crete (using an ISODATA classification).. 

� refer to xls im anhang, do minitab z test (but it will fail anyway). Accept Ha. 

 

As NDVI class numbers increase with corresponding NDVI value, the null 

hypothesis of research question 3 can thus technically not be rejected, as 18 > 10 

(see Appendix G). The first ten classes however represent mostly coastal water and 

shores. In principle, the findings suggest indeed a preference for cover types with 

low vegetation levels.  

4. Discussion 

Prior to an ecological interpretation of results, the applied evaluation methods and 

the input data used merit a critical review in order to point out potential technical 

shortcomings of this research, which may have introduced distortions into the results. 

4.1. Critique of Evaluation Methods 

As pointed out in Chapter 2.3.3, various evaluation methods for presence-only 

distribution models exist (Hirzel et al., 2006), but none appears to have matured yet 

sufficiently to be used as a single measure or statistic summarizing model 

performance (Pearce and Boyce, 2006). Similarly, sources of uncertainty in 

presence-only distribution models and associated modelling responses are still an 

active topic of research (Stoms et al., 1992, Barry and Elith, 2006). The recently 

proposed ‘continuous Boyce index’ (Hirzel et al., 2006) constitutes just one out of 

many examples, which could potentially improve the threshold-based evaluation 

methods used in this study. Note however that the debate centres on threshold 

identification and that both TSS and the binomial test carried out in this study are 

known to perform if applied correctly (see chapter 2.3.3). Using threshold-

independent ROC analysis on presence-only models has its limits as well, again 

mostly imposed by the context in which ROC is calculated. In fact, the excellent 

AUC results (and low p values) obtained for research question 2b) are not very 

meaningful at all, because the ‘plot’ approach caused a relative concentration of 
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presence points in the core ecological niche (Anderson et al., 2003). The aim 

however was not to identify a narrow core zone but to create a model that indicates 

the distribution limits. Therefore, this distribution model is most likely overfitted and 

suffers from high errors of omission. The rejection of hypothesis 2b) should 

therefore not be understood as a statement of superiority of the ‘plot’ approach over 

the ‘point’ approach.  

The AUC achieved for research question 2a (AUC = 0.70; 0.76 with ASTER) and 

question 1a (AUC = 0.86) are thus the more appropriate ones to interpret. These 

values can be considered very good, given that presence-only data can never produce 

an AUC of 1 because suitable but non-tested habitat is treated as ‘absence’. How 

close the AUC is to its potential maximum, can ultimately only be assessed if it is 

known how specialized the environmental niche is that P. erhardii occupies, because 

a wider niche corresponds generally with a lower AUC value (Phillips et al., 2004).  

Another problem is that most evaluation methods focus on testing the performance 

rather than the validity of a model. For this, truly independent data – ideally from a 

different study area – should be used (Hirzel et al., 2006, Elith et al., 2006). When 

this is not possible – as in this study –, it is all the more important to validate not 

only modelling results but the appropriateness and accuracy of all input data as well 

(Corsi et al., 2000).  

4.2. Critique of Species Presence Data 

For a realistic predictive distribution model, species presence records must cover the 

full geographic and ecological extent of its known distribution. Geographically this 

requirement was probably met by the data used for the Cretan populations of P. 

erhardii (see Figure 1). If P. erhardii’s full tolerance range along each 

environmental gradient however is not captured in the occurrence data provided by 

NHMC, then all results of this study are likely to contain errors of omission 

(Kadmon et al., 2004). Here the judgement of an expert in the species ecology is 

required; based on the general description given in Poulakakis et al., 2005, this 

requirement may perhaps been also met. Finally, quality assurance of species 

presence data must address spatial accuracy and estimate biases. Both measures were 

carried out in chapter 2.1.3, the former yielding positive the latter insufficient results. 

All modelling results contain therefore considerable site selection bias. While 

acknowledging the biases and limitations discussed above, it can be concluded that 

the distribution modelled to answer research question 1a) reflects in essence a 

reduced version of the fundamental niche of P. erhardii on Crete. The predicted 

distribution exceeds the realized niche because biotic interactions, human influence 
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and physical barriers to migration etc. were not considered (Peterson and Holt, 

2003). On the other hand, the model does not show the full fundamental niche, 

because presence sampling can only take place in the realized niche (Guisan and 

Tuiller 2005).  

4.3. Critique of Environmental Predictors 

Several predictor related aspects deserve attention when evaluating distribution 

model outcomes, because these settings are determined prior to any model run and 

evaluation test. Model outputs and test results are therefore influenced by these 

aspects but not directly sensitive to them.  

Firstly, undetected collinearity may cause two correlated variables to balance each 

other out, displaying a low ‘cumulative gain’, while in reality each predictor would 

generate a higher ‘cumulative gain’ if considered individually. In this study, while 

Maxent’s regularization function has compensated for some of this potentially 

harmful collinearity, an unknown amount of variable interaction – if it was present – 

is likely to have remained in the model. As described in chapter 2.2.1, a multi-

collinearity test using the VIF method carried out before selecting the final set of 

predictors, could have reduced this uncertainty.  

Secondly, varying resolution (cell size) among selected predictors influences model 

results. Therefore, care was taken that all predictors featured a cell size appropriate 

to the regional scale of the study, in order to maximize their respective potential 

distribution (see Table 1 for numeric details). Given the large mapping units of 

ESDB soil variables, the modelled distribution could be improved if data at a finer 

resolution were available to replace these predictors; currently they might be more 

useful for studies at a smaller scale. Similarly, it was observed during fieldwork and 

in comparison with ASTER imagery, that CORINE data were at times of poor spatial 

accuracy (deviations of up to 1 km) at known species occurrence sites, especially 

near (former) polygon borders. The observed significance of the land cover variables 

CORINE, ASTER and NDIV (a ‘pseudo-landcover’) does not contradict the findings 

of Thuiller et al., 2004 who report insignificance of land-cover predictors at a 

resolution of 50x50km. Results also conform with those of García Márquez, 2006 

who found that indirect (e.g. land cover) predictors are of significance at local and 

regional scale, provided this predictor is of ecological importance to the species.  

Thirdly, the number of classes within each predictor has an undetermined influence 

on model results. The distribution modelled for research question 2b illustrates this 

effect very well, as the ‘plot’ approach leads to an approximately tenfold increase in 

individual ‘cumulative gain’ of temperature and precipitation variables. As some of 
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the new points fall into a neighbouring cell and this cell’s value tends to be 

significantly different given the coarse resolution of 1x1km, drastic changes in model 

output are logical. Any variable with smaller cell size (e.g. altitude) is less sensitive 

to this effect because of the finer resolution (ensuring less abrupt changes). Even less 

sensitive are categorical predictors, because of less frequent changes in cell values 

(e.g. soil) or their finer “thematic resolution” (e.g. ASTER, NDVI), which also 

lowers the likelihood of drastic changes to neighbouring cells (at the regional scale). 

Although distribution 2b may be overfitted, the observed change in relative variable 

importance is extremely valuable: if instead of 10 points a single point (or two) with 

the average of these 10 points was taken, overfitting would have been reduced while 

– most importantly – a more realistic individual contribution to the ‘cumulative gain’ 

by temperature and precipitation predictors would have been achieved and the 

overall model gain increased! Either way, an appropriate number of classes per 

predictor (fine enough to identify the core zone but large enough to allow the model 

to reach out to the distribution limits) is essential and an issue that has not been 

receiving much attention in the species distribution literature.  

4.4. Interpretation of Results 

All hypotheses have been answered already in the chapter Results and critically 

evaluated in the previous paragraphs. This chapter attempts an ecological 

interpretation and discusses the results in light of the current knowledge about the 

species biogeography.   

So what can the environmental predictors found to strongly determine the current 

distribution of P. erhardii according to model (1a), tell us about the preferred habitat 

and surface (vegetation) cover? The overlay of NDVI and ASTER with CORINE 

data shows a clear association for the most important classes. All three layers suggest 

that natural grassland, sclerophyllous vegetation and bare rocks are the surface type 

of choice in general. Together they captured 74% of all occurrence records. 

Interestingly, a comparison of the annual profile of NDVI class 18 “sclerophyllous 

vegetation” reveals a strong similarity with NDVI class 15 (which received the 

second most presence counts) and matches  the CORINE layer 323 “natural 

grassland” 6 out of 10 times.  This points towards a specific vegetation type peaking 

in mid-June in terms of NDVI (Figure 4). 

 
Also, with NDVI found to be the most important predictor, the vast non-preferred 

area in the island’s centre composed of class 29 (unspecified) and 24 (CORINE 223: 

“olive groves”) may indicate a surface cover type that constrains P. erhardii’s 
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dispersal from the West to the East or vice versa (Figure 13). Ultimately, in-situ 

observations are required to relate the NDVI classes to specific vegetation 

communities (Box et al., 1989). Yet, this indirect predictor holds promise as it 

accounts for outbalancing effects of direct predictors. The heights of the Levká Óri 

mountain for instance, receive a maximum of precipitation, but little of this can be 

used by the flora, as the calcareous, rocky ground is so porous that only plants with 

low water requirements can survive (Fielding and Turland, 2005).  

Other predictors are in line with previous knowledge of P. erhardii’s habitat 

preferences (Poulakakis et al., 2005). Ideal locations are characterized by bedded 

limestone or carbonate rocks, shallow soils (< 40cm) with limestone as parent 

material and preferably calcaric leptosoils. Although the influence of climate 

variables, in particular cloud cover and actual evapotranspiration seems to be fairly 

strong on the regional scale (see chapter 3.2 for a short discussion), they shall not be 

discussed here, as the focus is on preferred ground parameters.   

The degree of stoniness did not seem to be of significance, however this could be 

due to both presence of alternative hiding options (shrub) or the very general 

classification of input data. Nor was a preference for a specific exposure (aspect) was 

obtained from the model, but this is likely due to inadequate input data, i.e. no 

appropriate sampling design.  

Although this research has yielded a distribution model with a good fit to the sample 

data, a good performance on test data and a significant predictor holding the 

potential for a reasonable ecological explanation, there may be a variety of other – 

competing or complementary – explanatory factors beyond mere environmental 

conditions for the observed distribution of P.erhardii on Crete. These include direct 

human impacts like pesticide use and biotic interactions (e.g. competing species, 

trophic chain positions). In fact, most island populations of P. erhardii are the only 

lizard species on their island (Engelmann, 1986), which may constitute evidence for 

the species vulnerability by competitors rather than by predators. On the other hand, 

as many populations occur in isolated localities rather than throughout large 

continuous areas (Poulakakis et al., 2005), there is also a possibility that the species’ 

biogeography has been influenced by rivals outcompeting P. erhardii for scarce 

resources. Recent advances in species distribution models aim at incorporating more 

of these factors, e.g. species migration, population dynamics, biotic interactions and 

community ecology and at multiple scales (Guisan and Thuiller, 2005). 

Another potentially very important explanatory factor are tectonic shifts and 

especially historic sea-level fluctuations. Significant local fragmentation of P. 

erhardii populations may have occurred during Pliocene flooding of much of the 

island (Creutzburg, 1963). It was beyond the scope of this project however to 
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consider these factors.  

5. Synthesis 

5.1. Conclusions 

The main objective of this study was to create a species distribution model able to 

‘explain’ the observed curious geographic distribution of P. erhardii on Crete, while 

using only a range of environmental predictors together with provided species 

occurrence data.  

 

To a certain extent this objective has been achieved. Using Maxent as the statistical 

model, and by ‘enhancing’ existing presence records by replacing them with 

‘representative natural habitat polygons’ in the immediate vicinity, the selected 

predictors allowed a distribution to be modelled that fits both the dominant 

occurrence in Western Crete and the marginal occurrence on Eastern islets. The 

regularized training gain was 1.86 with a bootstrapped AUC of > 0.95. 

 

The most useful predictors were found to be primarily NDVI at a 1x1 km scale, 

followed by cloud cover and actual evapotranspiration as climate variables, and 

CORINE land cover and altitude as ground related predictors. Soil variables 

however might have suffered from their high degree of generalization.  

 

Special emphasis was placed on evaluating the usefulness of ASTER imagery for 

modelling species distribution at this scale. The result is encouraging as the 

(unsupervised) classified land cover predictor turned out to be second in significance 

only to NDVI. Although it represents only a temporal snapshot, the ASTER variable 

showed a reliable association with temporally more stable land cover predictors such 

as multi-annual NDVI and CORINE. The extensive pre-processing requirements 

associated with using several ASTER granules, may inhibit its widespread use in 

studies at this scale.  

 

Replacing single occurrence points with a set of 10 points in order to capture the 

local environmental conditions more fully, increased the training gain by almost 

20%. This test also illustrates the significance of an appropriate ‘thematic resolution’ 
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of categorical variables as well as the considerable dependency of continuous 

predictors on spatial resolution. Although these 10 points covered only ~ 3000m2 on 

average, the individual ‘cumulative gain’ of temperature and precipitation predictors  

grew almost tenfold. As this approach appears to allow continuous predictors to fully 

exploit their discriminative power, it merits further testing in species distribution 

modelling. 

 

Finally, a preliminary descriptive analysis on which surface cover and vegetation 

types P. erhardii seems to favour the most was carried out. It was found that three 

specific NDVI classes contain 38% of all occurrence sites while covering only 6% of 

Crete. Using overlap analysis, these classes were found to associate mostly with the 

CORINE classes natural grassland, sclerophyllous vegetation and bare rocks.  

 

Pending an evaluation of findings using a truly independent dataset, the results of 

this research suggest that current environmental conditions are the primary 

explanatory factor for the observed geographic distribution of P. erhardii on Crete. 

 

5.2. Recommendations 

An array of both additional data preparation and analysis steps could be undertaken 

to improve the results obtained in this study.  

 

An alternative single-species modelling technique could be employed and results 

compared, e.g. GARP (Stockwell and Peters, 1999) or BRT (Friedman et al., 2000). 

 

A canonical ordination and correspondence analysis (Jongman et al., 2005) on 

fieldwork-derived macrohabitat data could be employed to test these vegetation data 

as surrogates in a community model such as GDM (Ferrier et al., 2002) to model 

potential distribution of P. erhardii. 

 

Additional ground truth data for a solid supervised ASTER land cover classification 

should be collected and used to expand the current ASTER mosaic across all of 

Crete; verify current predictions in situ. 

 

The current interpolated low resolution cloud cover (and evapotranspiration) dataset 

could be replaced with higher resolution data to test again the apparent importance of 

cloud cover as main West-East gradient and its derived significance in explaining P. 
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erhardii’s dominant occurrence in the West. 

  

Slope and aspect predictors could be replaced with solar radiation data: the removal 

of these indirect predictors should reduce the likelihood of error propagation (van 

Neil et al., 2004); irradiation is likely an essential biological determinant for P. 

erhardii as it controls body heat and thus available energy; both irradiation data and 

promising enhancement methods (Kumar et al., 1997) are available.  

 

The significance of the NDVI predictor could be further investigated (without 

additional fieldwork) by deriving new variables from it like ‘standard deviation of 

NDVI’ or ‘co-efficient of variation of NDVI’ as done in Omolo, 2006.  

 

Alternative indices to NDVI, such as the Distance Vegetation Index (DVI) and the 

related Perpendicular Vegetation Index (PVI) could be calculated. Both have been 

found to perform slightly better than NDVI for low vegetation levels (McCloy, 

2006). As P. erhardii appears to have a preference for phrygana vegetation cover, 

these indices hold the potential to further narrow down preferred surface cover using 

remote sensing data.  

 

Since both distance and ratio indices (including NDVI) are affected by soil 

reflectance effects in case that NIR reflection for soil and vegetation is similar; the 

Transformed Soil Adjusted Vegetation Index (TSAVI) (Baret et al., 1989), which 

incorporates soil line parameters more flexibly might therefore be another promising 

alternative (additionally) to NDVI.  
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7. Appendices 

Appendix A Q1A: Response curves of predictors for distribution across 

Crete reflecting modelled range preferences of P. erhardii in ecological space 

 

Appendix B Probability Distribution across Crete using top six predictors 

only (input: all qualified occurrence sites) 
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Appendix C Q2A: Response curves of predictors for distribution in 

Western Crete reflecting modelled range preferences of P. erhardii in ecological 

space (using only fieldwork-‘enhanced’ presence records) 

 
 

  

 

Appendix D Correlation matrix of continuous predictors  

 
Cell values represent the r2; values of 0 indicate no collinearity, values of +1 and -1 represent perfect 

correlation; calculations were performed in ArcMap 9.1 based on full predictor extent across Crete 
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Appendix E Comparison of previously modelled probability distributions 

Q1A: using all predictors 
except the ASTER-based 
land-cover variable; both 
fieldwork-‘enhanced’ 
presences & additional 
NHMC occurrence points 
with 1km accuracy or 
better (total Crete) 

Q2A: using all predictors 
except the ASTER-based 
land-cover variable and 
only fieldwork-
‘enhanced’ occurrence 
points (Western Crete) 

Q2A: using all predictors 
and the ASTER-based 
land-cover variable and 
only fieldwork-
‘enhanced’ occurrence 
points (Western Crete) 

Q2B: using all predictors 
and the ASTER-based 
land-cover variable and 
only fieldwork-‘enhanced’ 
occurrence ‘plots’ 
(Western Crete) 
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Appendix F Evaluation of distribution for Western Crete with ASTER 

(and ‘plots’ of 10 points replacing former single occurrence point) 
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Appendix G Presence counts per predictor class for a descriptive analysis 

of surface cover preferences of P. erhardii 
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Appendix H Preliminary count-based association of NDVI and ASTER 

with CORINE predictor (table showing NDVI counts above and ASTER counts 

below) 
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Appendix I Coefficients for Relative Atmospheric Correction required to 

mosaic ASTER data from 2002 (far Western Crete) with ASTER data from 

2006 (central Western Crete); coefficients derived from a dozen manually 

placed Pseudo-Invariant Features. 

 

 

 

Appendix J Determining the optimum number of classes (35) for 

ASTER-West ISODATA classification based on TD values 
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Errata 

Page 15:  “earthquake-induced collapse in 1450, Crete is now” 

Should be replaced by “earthquake-induced collapse in 1450 BC, Crete is now” 

 

Page 22: “Limit projection to Western Crete” 

Should be replaced by “Limit extent of input predictors to Western Crete” 

 

Page 29: „only simple multiple regression was performed“  

Should be replaced by „Independence of categorical predictors was not tested; for 

continuous predictors, a simple correlation matrix was compiled showing the 

correlation coefficients. Values near +1 and -1 indicate strong positive and negative 

correlation respectively; values near 0 indicate low inter-variable dependency. 

Predictors showing a high negative correlation indicate potentially harmful 

collinearity (see also page 59), which in turn may result in a model prediction 

strength below the potential maximum and an insufficient recognition of the 

individual contribution of affected predictors.”  

 

Page 38:  

“ASTER imagery was prepared in a similar fashion for the most of Central Crete as 

well;” 

Should be deleted without substitution.  

 

Page 51:  “able to generate about 30% of the ‘cumulative gain’”  

Should be replaced by “able to generate about 25% of the “cumulative gain’” 

 

Page 51:  “inclusion of the ASTER predictor increases the significance of the AUC” 

Should be replaced by “inclusion of the ASTER predictor increases the AUC value” 

 

Page 53: “Based on visual comparison of Figure 8 Probability Distribution 

in Western Crete without ASTER predictor (above) with Figure 11 (below)” 

Should be replaced by “Based on visual comparison of Figure 9 (above) with Figure 

11 (below)” 

 

Page 57:  “P. erhardii presence records coincide significantly with ‘open areas’, i.e. 

the most frequent NDVI class belongs to the lowest third of all NDVI classes 

generated for Crete (using an ISODATA classification).. 

� refer to .xls im anhang, do minitab z test (but it will fail anyway). Accept Ha.” 
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Should be deleted without substitution. 

 

Page 58: “the rejection of hypothesis 2b) should therefore not be understood as a 

statement of superiority”  

Should be replaced by “the rejection of the Null hypothesis (2b) should therefore not 

automatically be understood as a statement of superiority”. 

 

Page 63: “although these 10 points covered only”  

Should be replaced by “although these 10 points represent only” 

 

 


