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Hybrid zones provide insights into the evolution of reproductive isolation. Sexual selection can contribute to the evolution of

reproductive barriers, but it remains poorly understood how sexual traits impact gene flow in secondary contact. Here, we show

that a recently evolved suite of sexual traits that function in male-male competition mediates gene flow between two lineages of

wall lizards (Podarcis muralis). Gene flowwas relatively low and asymmetric in the presence of exaggerated male morphology and

coloration compared to when the lineages share the ancestral phenotype. Putative barrier loci were enriched in genomic regions

that were highly differentiated between the two lineages and showed low concordance between the transects. The exception

was a consistently low genetic exchange around ATXN1, a gene that modulates social behavior. We suggest that this gene may

contribute to themalemate preferences that are known to cause lineage-assortative mating in this species. Although female choice

modulates the degree of reproductive isolation in a variety of taxa, wall lizards demonstrate that both male-male competition and

male mate choice can contribute to the extent of gene flow between lineages.
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Understanding how species form requires insight into both the

processes that cause lineages to diverge and those that maintain

lineage identity during secondary contact (Meyer 1993; Price

2008; Nosil and Feder 2012; Ravinet et al. 2017). Although it

is often difficult to study these processes directly, it is possi-

ble to draw inference from patterns of gene flow across hybrid

zones (Ravinet et al. 2017). Contrasting multiple contact zones

can demonstrate if the phenotypes of hybridizing lineages influ-

ence genetic exchange, whereas variation in introgression across

the genome can provide information about the genetic basis of re-

productive barriers (Janoušek et al. 2015; Riemsdijk et al. 2019).

Because introgression partly is determined by the rate of hy-

bridization, lineage divergence in sexual characters may be par-

ticularly likely to limit gene flow. Although this is reasonably

well-established for female choice, male-male competition has

received limited attention despite that it too can influence the di-

rection and magnitude of gene flow (Lipschutz 2017; Tinghitella

et al. 2018). Unfortunately, few systems are understood well

enough to allow a priori predictions about geographic and ge-

nomic variation in the strength and direction of gene flow, which
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Figure 1. Geographic locations of all populations included in this study, and the inferred hybrid zone between the Italian (IT) and

the Southern Alps (SA) lineage. At the location of the coastal transect, the IT lineage is characterized by a suite of sexually selected

morphological traits and colors that are significantly more expressed than at the location of the inland transect (Table S1). On the right,

typical male Podarcis muralis with (bottom) and without (top) the sexually selected phenotype. Note that population MG on the coastal

transect is only represented by RAD-Seq data. Abbreviation: msat, microsatellite.

makes it difficult to know how robust the interpretations of many

observed patterns really are.

The common wall lizard, Podarcis muralis, is a promising

study system for unraveling the underlying causes of gene flow

during the early stages of speciation. Previous work has revealed

a contact zone in northern Italy between two lineages that di-

verged about 2.5 million years ago (Salvi et al. 2013): the Italian

(IT) lineage in the south and the Southern Alps (SA) lineage in

the north-west (Yang et al. 2018). Genomic introgression in the

southernmost part of the contact zone (along the Ligurian coast)

is highly asymmetric, from the IT into the SA lineage (Yang

et al. 2018). This asymmetric introgression is accompanied by

a suite of sexually selected morphological traits, colors, and

behaviors that makes IT males competitively superior to males

with the SA phenotype (Fig. 1; While et al. 2015). However, this

sexual phenotype arose only recently within the IT lineage (Yang

et al. 2018), and these characters are expressed to a very low

degree, if at all, in the IT lineage further north (Fig. 1; Table S1).

This provides a unique opportunity to test how secondary sexual

traits influence the extent and direction of gene flow. We make

two specific predictions: (1) if the suite of sexually selected

traits in wall lizards is the cause of asymmetric introgression,

as suggested by behavioral data (While et al. 2015), introgres-

sion should be asymmetric only when the IT lineage exhibits

this phenotype (i.e., along the Ligurian coast) and (2) because

divergence in secondary sexual characters can make lineages

less prone to hybridize (e.g., Boughman 2001; Schield et al.

2017), the overall gene flow between lineages should be lower

in the presence of the sexually selected phenotype than in its

absence.

Following a test of these predictions, we further compared

genomic clines between the two regions of secondary contact

to test if “barrier loci” were shared or unique, and associated

with the sexual traits themselves. Finally, we assessed if barrier

loci are located in genomic regions that are highly differenti-

ated between lineages, and if those regions include any putative

candidate genes.

Methods
The common wall lizard (Podarcis muralis) is a small diurnal

lizard that is abundant in southern Europe. Previous studies have

shown that there are two distinct genetic lineages of P. muralis in

north-western Italy (Gassert et al. 2013; Salvi et al. 2013; While

et al. 2015), which we here refer to as IT and SA. These lin-

eages diverged ∼2.5 million years ago but are now in secondary

contact (Salvi et al. 2013; While et al. 2015; Yang et al. 2018).

The contact zone has not previously been mapped out in detail

but is known to extend from the coast around Pisa, across the

Apennine mountains, and northward into Emilia-Romagna (e.g.,

Schulte et al. 2012; Salvi et al. 2013; While et al. 2015; Fig. 1).

SAMPLING STRATEGY

The lizards in this study were sampled from 47 locations in

northern Italy (Fig. 1; Table S2), including 19 populations from

previous studies (Michaelides et al. 2015; While et al. 2015;
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Yang et al. 2018). We used 20 populations to generate restric-

tion site-associated DNA sequencing (RAD-Seq) data, including

eight novel populations and 12 populations previously included

in the study by Yang et al. (2018). Forty-five populations were

genotyped using microsatellite markers, including published data

from 18 populations (Michaelides et al. 2015; While et al. 2015).

Lizards were captured by noosing and tissue samples from the tail

or toe (in case of complete tail loss) were collected for genetic

analyses. We took standard morphological measures (snout-to-

vent length, total length, head length and width, and body mass),

scored the intensity of green dorsal coloration, and photographed

the lizards to quantify the extent of black ventral coloration. For

more details on the field protocol and the phenotyping of lizards,

see While et al. (2015) and Yang et al. (2018). All lizards were

released at the location of capture after processing. Sample col-

lection was carried out in accordance with local laws and regu-

lations in Italy, under the collection permit number Prot. PNM-

2015-0009720.

LABORATORY WORK AND GENOTYPING

Genomic DNA for each sample was extracted using DNeasy

blood and tissue kit (Qiagen, USA). We genotyped 547 indi-

viduals at 13 microsatellite loci developed by Richard et al.

(2012) and Heathcote et al. (2015), and combined these data

with published data that were generated using the same proto-

col (Michaelides et al. 2015; While et al. 2015). In brief, PCR

products were labeled with the fluorescent dye 6-FAM, HEX, or

NED, and, together with an internal ladder (red ROX-500), an-

alyzed using an ABI 3730XL Genetic Analyser (Thermo Fisher

Scientific). Alleles were scored in Geneious (version 6.1.7), and

any ambiguous peaks were repeated to confirm the genotype (Ta-

ble S3). The microsatellite data were examined for linkage dise-

quilibrium (LD) and Hardy-Weinberg equilibrium (HWE) using

Genepop (version 4.7.3; Raymond and Rousset 1995), and pegas

(version 0.12; Paradis 2010) with 1000 replicates of Monte Carlo

test. No locus showed LD, but four loci (“C38”, “356”, “109”

and “Pm16”) showed significant deviation from HWE, and were

excluded from the analyses.

For RAD-Seq data, library preparation was conducted fol-

lowing the protocol in Peterson et al. (2012) and Yang et al.

(2018) to generate the double-digest restriction site-associated

DNA markers. A total of 95 individuals from eight locations were

sequenced, and combined with previous data (compiled data de-

posited in NCBI Short Reads Archive [SRA] with accession num-

ber PRJNA486080). STACKS (version 2.2; Catchen et al. 2011;

Rochette et al. 2019) was used to process the RAD-Seq reads and

infer single nucleotide polymorphisms (SNPs) for each individ-

ual. At first, the “process_radtag” module was used to remove

reads with low-quality score (Phred score <30), ambiguous base

call, and incomplete barcode or restriction site. Clean reads were

mapped to the genome of P. muralis (Andrade et al. 2019) using

BWA (Li and Durbin 2009). Sorted bam files were used as input

for the reference-based STACKS pipeline that contains modules

“gstacks” and “populations” to estimate SNPs using a Marukilow

model (Maruki and Lynch 2017). Stringent filtering was imple-

mented to obtain a high-quality SNP dataset (see details in Text

S1).

POPULATION STRUCTURE ANALYSIS

Although the genetic structure for populations along the coast

was revealed by previous studies (While et al. 2015; Yang et al.

2018), the relationship among populations in the Apennines and

further north remains unknown. To address this, we first esti-

mated the population clustering from microsatellite data using a

Bayesian method implemented in STRUCTURE (version 2.3.4;

Pritchard et al. 2000) with an admixture model (Falush et al.

2003) and correlated allele frequencies. A total of 30 indepen-

dent runs were performed with a burn-in of 105 iterations and a

run length of 106 iterations for a number of genetic clusters (K)

from 1 to 5. The best K was determined according to the method

in Evanno et al. (2005). Each individual was assigned a hybrid in-

dex (Q) using the software STRUCTURE (version 2.3.4). tess3r

(version 1.1.0; Caye et al. 2015) was used to estimate the spatial

distribution of the hybrid zone (0.1 < Q < 0.9).

We also inferred the genetic relationship between the pop-

ulations based on SNP genotypes from RAD-Seq data, includ-

ing principal component analysis (PCA) in Plink (version 1.9;

Chang et al. 2015), a neighbor-joining network based on pair-

wise genetic distance matrix in treemix version 1.13 (Pickrell

and Pritchard 2012), and individual admixture assuming differ-

ent numbers of clusters with co-ancestry clusters (K) from 1 to

15 in ADMIXTURE (version 1.3.0; Alexander et al. 2009).

MODELING OF GEOGRAPHIC CLINE AND

DEMOGRAPHIC HISTORY

According to the population structure, we estimated geographic

clines for two transects to establish the overall patterns of in-

trogression across the hybrid zone based on the hybrid index Q

for each population assigned by ADMIXTURE. The inland tran-

sect, north of the Apennines (Fig. 1), included six populations

and stretched from Sestri Levante (SL), which belongs to the SA

lineage, to Pian Di Venola (PV), which belongs to the IT lineage.

To ensure consistency, we set the coastal transect south of the

Apennines to also start at SL, and added eight locations eastward

to Chianni (CN; Fig. 1). Note that SL is not the end-point of the

transect of previous studies (While et al. 2015; Yang et al. 2018),

which include populations further to the east. However, in this

case, SL is an appropriate choice because it means that the two

transects have a single population in common (i.e., the first pop-

ulation in the SA lineage). The hybrid indices for each transect
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against their point-to-point distance were fitted to a series of equi-

librium geographic cline models using the Metropolis-Hastings

Markov chain Monte Carlo (MCMC) algorithm employed in the

R package HZAR (version 0.2-5; Derryberry et al. 2014). We ran

15 separate models that varied in the number of cline shape pa-

rameters estimated for hybrid indices and selected the model with

the lowest Akaike information criterion (AIC) as the best-fitting

cline.

We tested which demographic scenarios best describe the

pattern of secondary contact for the two transects based on the

joint allele frequency spectrum (JAFS) of SNPs using the soft-

ware δaδi (version 1.6.3; Tine et al. 2014; Rougeux et al. 2017).

In δaδi, each demographic model consists of a series of popu-

lation parameters, including effective population size (N), time

scale (T), and migration rate (m). The same populations in ge-

ographic cline analysis with hybrid index Q < 0.1 and Q >

0.9 were used for demographic simulation (Fig. 1). Four mod-

els were fitted for each transect that represent alternative modes

of divergence between the two genetic lineages, including Strict

Isolation (SI), Isolation-with-Migration (IM), Ancient Migration

(AM), and Secondary Contact (SC). Mutation rate per year was

set to 2.1 × 10−10 according to data for a related species (Tol-

lis and Boissinot 2014), and the generation time was set to 2.09

years/generation. The input JAFS was projected to a sample size

of N = 30 for each lineage. Models were fitted independently us-

ing successively a hot and a cold simulated annealing procedure

followed by “BFGS” optimization (Gutenkunst et al. 2009). We

ran 20 independent optimizations for each model to achieve con-

vergence and retained the best one for comparisons among mod-

els based on AIC. We also used an additional software package

(fastsimcoal26; Excoffier et al. 2013) to infer the demographic

history and confirm the consistency between best-fitting scenar-

ios for these data. In fastsimcoal26, 1,000,000 maximum simu-

lations were run for each parameter set with a maximum of 100

loops. We also ran 20 optimizations for each model starting from

different random seeds. A total of 100 replicates of parametric

bootstrap were used to estimate the parameter uncertainties and

confidence intervals for both approaches.

BAYESIAN GENOMIC CLINE ANALYSIS

We used a total of 1029 diagnostic SNPs to assess patterns of in-

trogression in the two hybrid zone transects based on Bayesian

genomic cline analysis (BGCA) as implemented by Gompert and

Buerkle (2011) and Gompert et al (2012). This analysis uses

genomic cline models to describe patterns of introgression be-

tween two populations that are near fixed for the focal markers

(i.e., “pure” populations). The genomic cline model has two ba-

sic parameters—α and β (Gompert and Buerkle 2011). The ge-

nomic cline parameter α measures the change in probability of

ancestry relative to a null expectation. Increasing (positive val-

ues) or decreasing (negative values) α parameter values reflect

shifts in genomic clines toward one of the two pure populations

(IT → SA for positive values, and SA → IT for negative val-

ues in this study). The genomic cline parameter β reflects the rate

of change in probability of ancestry from one pure population to

the other. Positive values of β parameter denote steeper clines,

whereas negative values denote wider clines. Thus, α parameter

values represent directional movement of alleles from one lin-

eage into another, whereas β parameter values reflect the strength

of the barrier to gene flow between the two lineages.

The focal markers used in the BGCA analyses are diagnostic

SNPs. We defined SNPs as diagnostic when the frequency of the

SNP was >0.75 in the populations at the ends of each transect

and with different alleles for the two lineages. In addition, we

singled out a set of markers from the SNPs that were identified

by Yang et al. (2018) as being associated with the sexually

selected characters in the IT lineage (FST > 0.066 between

populations with the characters and reference populations; for

more information, see Table S2). Those loci were analyzed only

for the coastal transect because this is where the sexually selected

characters are found. To assess both α and β parameters, we ran

five independent MCMC chains for each dataset (transect) for

50,000 steps with 25,000 steps as a burn-in period with random

seeds. The output was recorded each 25th step to obtain 1000

samples. We merged the output of all five MCMC chains by

averaging estimates over all chains for each marker. The 90%

credible intervals (CIs) were merged over the five MCMC chains

by choosing the most conservative (i.e., the widest) intervals.

These merged 90% CIs were used to detect outliers. Pearson’s χ2

test with Yates’s correction and Fisher’s exact test were applied to

evaluate the difference of α and β parameters between transects or

datasets.

To identify candidate genes associated with outlier SNPs, we

scanned the genes within 25-kb windows around SNPs that rep-

resented significant α and positive β outliers. Because the biolog-

ical relevance of outlier SNPs with negative β values is unclear

for our present aims, we excluded this category. We characterized

the functional composition of candidate genes using the Gene

Ontology (GO) term classification derived from the P. muralis

genome annotation (Andrade et al. 2019). Fisher’s exact test with

false discovery correction rate correction was used to identify the

overrepresented functional categories.

To further investigate the relationship between genetic diver-

gence and degree of introgression, we calculated the pairwise FST

between IT and SA for each transect using VCFTools (version

0.1.14; Danecek et al. 2011). An elevated pairwise FST can char-

acterize genomic regions under lineage-specific selection (Chen

et al. 2016; Lamichhaney et al. 2016), although it can also arise

without selection (i.e., neutral divergence) or reflect genomic

variation in, for example, recombination rates (Sodeland et al.
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2016; Ochoa and Storey 2019). FST values were calculated across

the genome over 100 kb fixed windows that contain at least two

variants in the full SNP dataset. These windows were assigned to

one of three categories: (i) containing at least one barrier locus

(positive β outlier), (ii) containing at least one diagnostic SNP

but no barrier loci, and (iii) containing only SNPs that are nondi-

agnostic and not barrier loci (i.e., “normal” SNPs). We assessed

the significance levels of differences in FST values between cat-

egories (i) and both (ii) and (iii) by permutation tests with 1000

iterations. In addition to using pairwise FST as a relative mea-

sure of divergence, we also calculated Dxy, the average number

of pairwise differences between alleles, as an absolute measure

of divergence (Nei 1987; Cruickshank and Hahn 2014).

Results
In total, we obtained genotypes of nine microsatellite loci for 939

common wall lizards from 45 populations, and RAD-Seq data

for 259 individuals from 20 populations, which included 21,305

SNPs with mean coverage of 25.01 per site, and average geno-

typing rate of 95.4%.

POPULATION STRUCTURE AND IDENTIFICATION OF

HYBRID ZONES

For microsatellite data, the Bayesian clustering analysis indicated

that two genetic clusters best describe the data, separating all pop-

ulations into IT and SA lineages from west to east. Nine popula-

tions were identified with hybrid ancestry according to the hybrid

index (i.e., 0.1 < Q < 0.9). The hybrid zone was estimated to be

located between longitude 10.0°E and 10.7°E (Figs. 1 and S1).

For the RAD-Seq data, the first principal component (vari-

ance explained = 62.7%) also separated all populations into the

two groups that correspond to the IT and SA lineages (Fig. 2A).

The second principal component (variance explained = 14.7%)

separated the IT lineage into a northern and a southern group,

roughly separated by the Apennine mountains. Cedogno (CX), on

the inland transect, exhibited clear evidence of genetic admixture,

as did two populations Montignoso (MG) and Viareggio (VI) on

the coastal transect (Fig. 2A). This result was consistent with re-

sults from the neighbor-joining network, where the IT and SA

populations were separated, with hybrid populations in between

(Fig. 2B). ADMIXTURE clustering analysis was also consistent

with the separation between IT and SA when the number of pre-

sumed ancestral population (K) was set to two, and with the ge-

netic divergence within the IT lineage when K was set to three

(which was best supported by cross-validation). The inferred hy-

brid indices for CX, MG, and VI from clustering analysis also

supported the hybridization between IT and SA at these locations

(Fig. 2C).

MODELING OF GEOGRAPHIC CLINE AND

DEMOGRAPHIC HISTORY

For the inland transect, the center of the best-fitting cline was

71.54 (95% CI: 63.70-79.38) km from the western population

(SL), and the width of the cline was 49.53 (95% CI: 33.69-65.37)

km (Fig. 3A). Similarly, the center and width of the cline for the

coastal transect were 75.48 (95% CI: 71.76-79.20) km and 33.65

(95% CI: 24.89-42.41) km, respectively (Fig. 3B).

Model comparison in δaδi showed that the best-fitting model

for both transects was the secondary contact model, with IT and

SA lineages coming into secondary contact approximately 260

(CI: 141-423) thousand years ago for the inland transect and 358

(CI: 251-662) thousand years ago for the coastal transect (Table

S4). The two transects showed significantly different patterns of

gene flow between IT and SA. For the inland transect, the best-

fitting model suggested that the gene flow measured as migration

rate “m” between IT and SA was equal in magnitude in both di-

rections (1.42 × 10−6 from IT into SA with CI: 1.15 × 10−6 to

1.45 × 10−6; 1.11 × 10−6 from SA into IT with CI: 0.95 × 10−6

to 1.31 × 10−6). In contrast, for the coastal transect, the genetic

exchange was asymmetric, with about twice the gene flow from

IT into SA than vice versa (1.41 × 10−6 with CI: 1.01 × 10−6 to

1.54 × 10−6 from IT into SA; 7.62 × 10−7 with CI: 5.79 × 10−7

to 7.80 × 10−7 from SA into IT; Figs. 3C and 3D; Table S5). The

fastsimcoal26 simulations gave different absolute values, but also

supported asymmetric gene flow for the coastal transect (1.44 ×
10−7 with CI: 1.10 × 10−7 to 2.29 × 10−7 from IT into SA; 3.34

× 10−8 with CI: 1.07 × 10−9 to 5.89 × 10−8 from SA into IT) but

not for the inland transect (1.09 × 10−7 with CI: 9.30 × 10−8 to

1.69 × 10−7 from IT into SA; 1.58 × 10−7 with CI: 1.34 × 10−7

to 2.05 × 10−7 from SA into IT; Table S5). From these results, it

is also evident that the gene flow from SA into IT along the coast

is significantly lower than any of the other estimates.

BAYESIAN GENOMIC CLINE ANALYSIS

Consistent with asymmetric introgression from IT to SA in the

coastal transect but not in the inland transect, there were rela-

tively more outliers with positive α values (i.e., IT → SA) in the

coastal transect (199 and 134 outliers with positive and negative

α in the coastal transect versus 112 and 108 outliers in the in-

land transect; χ2 = 3.86, P = 0.049; Fig. 4A). β values exhibited

marginally more positive outliers (characteristic of steeper clines)

than negative outliers (characteristic of wider clines) in both tran-

sects, with 142 and 82 for the coastal transect, and 39 and 27 for

the inland transect (χ2 = 0.24, P = 0.624; Fig. 4B). The rela-

tionship between α and β values is best described by an inverted

U-shaped curve (Pinland = 0.014; Pcoastal = 0.003), where the pos-

itive β parameter values associated with α parameter values close

to zero (Fig. S2). Thus, the barrier loci do not show any sign of

directional movement (Table 1).
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A

B

C

Figure 2. Summary of the results from the population genetic analyses. (A) Two dimensional PCA plots of all individuals based on

21,305 SNPs. The two genetic lineages (IT and SA) are separated on PC1 with hybrid populations falling in between. PC2 differentiates

the Italian lineage following a North-South gradient. (B) Neighbor-joining network based on genetic distancesmeasured by p-distance. (C)

Admixture clustering of sampled individuals into two and three groups (clusters K). The proportion of each individual’s genome assigned

to each cluster is shown by the length of the colored segments.
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1.11  10-6

A

B D

C

Figure 3. Introgression patterns of the two transects. Maximum likelihood geographic clines (solid lines) for the inland (A) and coastal

transect (B), respectively. Shadings represent the confidence intervals around the estimated clines, and the dashed lines indicate the

center of each cline. Demographic simulations of the historical gene flow (“m”) between the Southern Alps and Italian lineages in the

inland (C) and coastal (D) transect, respectively. Arrows indicate the gene flow between the two lineages under the secondary contact

scenario. The thickness of the arrows is proportional to the estimated gene flow.

Table 1. Summary of Bayesian genomic cline analysis (BGCA) results.

Outlier Interpretation Inland Coastal
a

α > 1 Direction introgression from IT into SA 112 199 (7)
α < 1 Direction introgression from SA into IT 108 134 (2)
β > 1 Increase the rate of change in ancestry 39 142 (4)
β < 1 Decrease the rate of change in ancestry 27 82 (2)

aNumbers in parentheses refer to 22 diagnostic loci that were previously shown to be associated with the sexually selected characters (Yang et al. 2018).

Of the 261 SNPs that were identified as being associated

with the sexually selected characters in the IT lineage, 22 ful-

filled the criteria for the genomic cline analysis (i.e., they are di-

agnostic SNPs for the focal clines). Amongst these, seven and

two outliers were identified with positive and negative α values,

and four and two were identified with positive and negative β val-

ues, respectively. These frequencies are similar to those of the to-

tal SNP dataset (Fisher’s exact Pα = 0.654, Pβ = 0.532; Table 1),
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A

B

Figure 4. The genomic region with strongest signature of restricted introgression in both hybrid zones lies on chromosome 8. (A) FST
values between the IT and SA lineage in both transects on chromosome 8. The shaded area marks the region with two shared positive β

outliers between the two transects, which also shows elevated genetic divergence (high FST) between the two lineages. (B) The structure

of the ATXN1 gene in the candidate region. Gray boxes mark the positions of exons and red crosses indicate the position of the two

outliers with positive β values.

which implies that highly lineage-divergent loci associated with

sexually selected traits did not behave significantly different from

genome-wide loci.

IDENTIFICATION OF GENES ASSOCIATED WITH

BARRIER LOCI

For the inland transect, 57 genes were identified around outliers

with positive β values (i.e., putative barrier genes between IT and

SA), which were overrepresented in 10 GO categories (Fig. S3).

For the coastal transect, the same outlier groups contained a to-

tal of 210 genes with positive β values, which were overrepre-

sented in 10 GO categories (Fig. S3). The low number of di-

agnostic SNPs that are associated with sexually selected traits

(22) precluded tests of functional enrichment for these genes (Ta-

ble S5). A total of 12 candidate genes around positive β outlier

SNPs appeared in both transects. Among those genes, overrepre-

sentation analysis identified only one GO category with positive

β (Fig. S3). This was based on a total of 11 outlier SNPs with

positive β in both transects (Table S6). For a summary of the

corresponding analyses for positive and negative α values, see

Text S2.

To further investigate the genetic divergence of barrier genes

between IT and SA in both transects, we compared the pairwise

FST and the absolute divergence Dxy between different regions

of the genome (see Methods). We found for both transects that

the FST values (inland: 0.5553; coastal: 0.5921) for regions con-

taining barrier loci were significantly higher than the FST val-

ues for regions containing other diagnostic loci (inland: 0.4396;

coastal: 0.4406; both P < 0.001) and only “normal” SNPs (in-

land: 0.1816; coastal: 0.1868; both P < 0.001). Similarly, the
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Dxy values (inland: 0.0031; coastal: 0.0033) for regions contain-

ing barrier loci were significantly higher than the mean Dxy val-

ues for other diagnostic loci (inland: 0.0027; coastal: 0.0027;

Pinland = 0.001; Pcoastal < 0.001) and only “normal” SNPs (inland:

0.0018; coastal: 0.0019; both P < 0.001). Among all barrier loci,

we found two neighboring loci (48,142,324 and 48,398,446) on

chromosome 8 that were positive β outliers in both transects and

that were most highly differentiated between IT and SA in both

transects (FST > 0.7; Fig. 4A; Dxy > 0.0044; Fig. S4). The two

loci are located in a region containing the gene ataxin 1 (ATXN1;

Fig. 4B), a gene that has been shown to play a role in the devel-

opment of social behaviors (Celestino-Soper et al. 2012; Lu et al.

2017).

Discussion
Geographic variation in gene flow across a hybrid zone in com-

mon wall lizards suggests that sexual selection promotes asym-

metric introgression in part by limiting gene flow from the less

competitive lineage. Putative barrier loci showed limited overlap

between the two transects, but were consistently highly differ-

entiated between lineages and included one interesting candidate

gene. Here, we discuss these results and how they fit with the

role of male-male competition and mate choice in the evolution

of reproductive barriers.

We have previously shown that a suite of sexually selected

characters originated in the south of the IT lineage and later

spread northwestward to reach the secondary contact zone be-

tween the IT and SA lineages (Yang et al. 2018). The sexually

selected morphologies, colorations, and behaviors introgress into

the SA lineage along the Ligurian coast, and this is accompa-

nied by asymmetric gene flow in the same direction (While et al.

2015; Yang et al. 2018). Here, we show that this asymmetry in

gene flow does not exist in the inland hybrid zone, where the

two lineages both share the ancestral phenotype. The different

pattern of genomic introgression for the two transects is further

evidence that sexual selection caused asymmetric introgression

between the two lineages along the Ligurian coast. Italian males,

with stout bodies, large heads, and black and green color orna-

ments, outcompete other males for access to territories and fe-

males, which results in a bias toward hybridization between IT

males and SA females in experimental contact zones (MacGre-

gor et al. 2017a; While et al. 2015; Heathcote et al. 2016). Such

differences in male competitive advantage may very well be an

important cause of asymmetric introgression in other species too,

a hypothesis that can be put to the test using multiple transects

as we did here, or using comparative analysis across pairs of hy-

bridizing species.

Although there is extensive phenotypic introgression along

the coast (While et al. 2015), the geographic and genomic data

from the coastal and inland clines suggest that genetic material

does not flow freely between lineages (see also Yang et al.

2018). Furthermore, the evolution of sexually selected characters

appears to have limited this genetic exchange even further as

gene flow from SA into IT was significantly lower on the coast

than the symmetric gene flow between the two lineages in the

inland. Thus, secondary sexual characters not only promote

asymmetric introgression of particular alleles (Yang et al. 2018),

but may also reduce the overall genetic exchange in the opposite

direction.

Several studies have suggested that sexual selection can play

a major role in preventing gene flow, an effect that is often at-

tributed to female choice (Paterson 1985; Stein and Albert 2006).

In contrast, female common wall lizards do not chose mates

based on male morphology, coloration, or the composition of

femoral secretions, and they therefore fail to discriminate be-

tween males of lineages that are very different genetically and

phenotypically (Heathcote et al. 2016; MacGregor et al. 2017a,b).

This appears to be common for the clade as a whole: for exam-

ple, females do not discriminate between males from different

lineages in the Iberian species complex (Martin and Lopez 2006;

Font et al. 2012). We therefore interpret the reduced gene flow

from the SA lineage into the IT lineage along the Ligurian coast

as the result of IT males limiting the mating opportunities for

males with a predominant SA phenotype and genotype. If so,

wall lizards would be one of the few examples where male-male

competition reduces gene flow in secondary contact (reviewed

in Lipshutz 2017). Although sexual selection alone is very un-

likely to complete speciation (Servedio and Boughman 2017), it

can promote geographic exclusion and thereby increase the like-

lihood that lineages become reproductively isolated (Tinghitella

et al. 2018). This scenario is plausible if selection on the sexual

traits themselves vary across the landscape, because this could

promote further genetic divergence between lineages and select

against hybrids. Whether this is the case in common wall lizards

is currently unknown. More generally, traits used in male-male

competition appear highly evolutionarily labile within the wall

lizard clade (e.g., Marshall et al. 2015; see Böhme 1986), which

provides a useful setting for addressing the role of sexual selec-

tion at different stages in the speciation process, a topic that so

far has been dominated by research on taxa with strong female

choice (e.g., birds; Cooney et al. 2017).

Although male-male competition can explain the asymmet-

ric introgression along the coast, the limited gene flow from SA

into IT may be exaggerated by the males’ preference for fe-

males from the same lineage. It is unclear what female traits

that male lizards pay attention to, but male preferences reliably

cause lineage-assortative mating in free-ranging common wall

lizards (Heathcote et al. 2016; MacGregor et al. 2017a; see also

Font et al. 2012). Male mate choice may therefore explain why
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gene flow appears restricted across the length of the hybrid zone

despite that there are no physical barriers, or evidence for low

viability of hybrids (While et al. 2015). That the most consis-

tent genomic signature of reproductive isolation in both transects

mapped onto the ATXN1 gene is interesting in this regard. This

gene encodes a chromatin-binding factor that represses Notch

signaling and is involved in neurogenesis, brain development, and

social behavior (Celestino-Soper et al. 2012; Lu et al. 2017). For

common wall lizards, mate recognition and assessment occur pri-

marily through male premating courtship of females (Sacchi et al.

2007; Scali et al. 2013). Thus, we speculate that the ATXN1 gene

may contribute to the reproductive barrier between IT and SA

via divergence in neurobehavioral functions. Such genetic dif-

ferences could help explain why reproduction is assortative in

populations of mixed origins and in the absence of opportunities

for social learning of mate preferences from adults (While et al.

2015). However, more data are needed to substantiate that ATXN1

is an important candidate gene and to identify other loci and bio-

logical functions that promote reproductive barriers between the

two lineages.

Theory predicts that gene flow should be particularly re-

stricted for genomic regions that have been under strong lineage-

specific selection. In wall lizards, the putative barrier loci were

indeed predominantly located in regions that were highly differ-

entiated between lineages, which can be a signature of lineage-

specific selection (Stern and Nielsen 2019). However, except

for the association with ATXN1, very few candidate barrier loci

were shared between the two transects. Similarly, the GO cate-

gories that were overrepresented by those candidate genes also

showed limited overlap in the two hybrid zones. Thus, although

the reproductive barriers consistently involve highly divergent

genomic regions, the genomic basis of the barriers appears to

show geographic differences. These differences are apparently

not caused by the sexual phenotype because candidate SNPs for

this phenotype did not feature among the putative barrier loci.

Putative barrier loci differ between hybrid zones also in other

taxa, such as Heliconius butterflies (Nadeau et al. 2014), mouse

(Mus musculus; Janoušek et al. 2015), and Bufo bufo/spinosus

(Riemsdijk et al. 2019). One possible explanation is local adap-

tation (e.g., to climate), creating a mosaic of genomic variation

that results in local incompatibilities between lineages. However,

high genomic differentiation could also arise from other pop-

ulation processes (e.g., founder effects, see Ochoa and Storey

2019), variation in recombination rates, or structural differences

(e.g., chromosomal rearrangement; Sodeland et al. 2016). Thus,

further studies of genome-wide patterns of differentiation be-

tween lineages and populations are needed to clarify the ex-

tent to which the putative barrier genomic regions identified

here have been under divergent selection in the two lineages.

It will also be important to assess if there is ongoing selection

within the hybrid zone, and to what extent hybrids might be at a

disadvantage.

In summary, geographic variation in gene flow across this

zone of secondary contact suggests that secondary sexual traits

that function in male-male competition can shape the extent of

reproductive isolation between lineages and generate asymmetric

patterns of introgression.
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