
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/5267552

Bioaccumulation of Heavy Metals in the Lizard Psammodromus algirus After a

Tailing-Dam Collapse in Aznalcóllar (Southwest Spain)

Article  in  Archives of Environmental Contamination and Toxicology · July 2008

DOI: 10.1007/s00244-008-9189-3 · Source: PubMed

CITATIONS

25
READS

401

4 authors:

Some of the authors of this publication are also working on these related projects:

Evolutionary ecology of lizards along elevational gradients View project

Dragon’s blood tree's gecko – a flagship for Socotra fauna View project

Rocío Márquez-Ferrando

Estación Biológica de Doñana

16 PUBLICATIONS   233 CITATIONS   

SEE PROFILE

Xavier Santos

CIBIO Research Center in Biodiversity and Genetic Resources

178 PUBLICATIONS   2,125 CITATIONS   

SEE PROFILE

Juan m Pleguezuelos

University of Granada

217 PUBLICATIONS   3,256 CITATIONS   

SEE PROFILE

Diego Ontiveros

University of Granada

22 PUBLICATIONS   462 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Juan m Pleguezuelos on 24 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/5267552_Bioaccumulation_of_Heavy_Metals_in_the_Lizard_Psammodromus_algirus_After_a_Tailing-Dam_Collapse_in_Aznalcollar_Southwest_Spain?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/5267552_Bioaccumulation_of_Heavy_Metals_in_the_Lizard_Psammodromus_algirus_After_a_Tailing-Dam_Collapse_in_Aznalcollar_Southwest_Spain?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Evolutionary-ecology-of-lizards-along-elevational-gradients?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Dragons-blood-trees-gecko-a-flagship-for-Socotra-fauna?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rocio_Marquez-Ferrando?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rocio_Marquez-Ferrando?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Estacion_Biologica_de_Donana?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rocio_Marquez-Ferrando?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xavier_Santos3?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xavier_Santos3?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/CIBIO_Research_Center_in_Biodiversity_and_Genetic_Resources?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xavier_Santos3?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan_Pleguezuelos?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan_Pleguezuelos?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Granada?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan_Pleguezuelos?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego_Ontiveros?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego_Ontiveros?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Granada?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego_Ontiveros?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan_Pleguezuelos?enrichId=rgreq-f2a92d1fa895528ca58a07d99dce7167-XXX&enrichSource=Y292ZXJQYWdlOzUyNjc1NTI7QVM6MjEwNDgwNzM3MDY3MDA4QDE0MjcxOTM5MjYyMTY%3D&el=1_x_10&_esc=publicationCoverPdf


Bioaccumulation of Heavy Metals in the Lizard Psammodromus
algirus After a Tailing-Dam Collapse in Aznalcóllar (Southwest
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Abstract Quantification of heavy metal concentrations in

biota is a common technique that helps environmental

managers measure the level of pollutants circulating in

ecosystems. Despite interest in heavy metals as indicators

of localized pollution, few studies have assessed these

pollutants in reptiles. In 1998, the tailing pond of a pyrite

mine near Aznalcóllar (southwestern Spain), containing

mud with high heavy metal concentrations, collapsed,

releasing 6 million m3 of toxic sludge into the Guadiamar

Basin. Here we analyze heavy metal concentrations in the

most common reptile in the area, the large psammodromus,

Psammodromus algirus, a rather small lizard. We quanti-

fied levels of several elements (Hg, Sb, Cd, Cr, Tl, Sn, Ba,

Cu, Pb, Sr, Mn, Rb, As, and Zn) in lizard tail clips collected

in and around the affected area during the springs of 2005

and 2006. Samples were collected from two contaminated

localities, one directly affected by the spill, and another

adjacent to the tailing pond, but not covered by toxic mud.

We also collected samples from a nonpolluted control site

in the same basin. We found higher concentrations of As,

Tl, Sn, Pb, Cd, and Cu in lizards from the affected area

than in lizards from the control site, indicating the con-

tinued presence of heavy metal pollutants in the terrestrial

food chain 8 years after the mine accident. We did not

uncover sexual or annual differences in heavy metal con-

centrations, although concentrations increased with lizard

size. We discuss how heavy metals moved across the food

chain to lizards, despite intensive restoration efforts after

the accident, and suggest that reptiles to be included in

biomonitoring programs of heavy metals pollution in ter-

restrial habitats.

Heavy metals contamination associated with mining

activities has caused environmental problems in several

countries (Hsu et al. 2006), hence, environmental manag-

ers are particularly interested in developing methods to

detect heavy metals loads in biota (Lambert et al. 1996;

Loumbourdis, 1997; Meharg et al. 1999; Burger et al.

2006). The events occurring in the Guadiamar Basin, on

the southwestern Iberian Peninsula (Spain), provides

resource managers with a model case study for biomoni-

toring heavy metals in the ecosystems. On April 1998, the

wall of a large pond containing sulfide ore deposits col-

lapsed, spilling more than 6 million m3 of acidic water and

toxic sludge directly into the Agrio and Guadiamar rivers

(Gallart et al. 1999; Grimalt et al. 1999; Dorronsoro et al.

2002). The main toxic metals spilled were Pb, Zn, As, Cu,

and Cd (Alastuey et al. 1999; Cabrera et al. 1999). Tailing

materials reached an area 40 km long and 0.5 km wide in

the Guadiamar Basin, with sludge covering the ground in a

layer 0.3–3.0 m thick, depending on the distance from the

collapsed dam. Environmental managers first (year 1998)

attempted to clean up the pyrite slurry by mechanically

removing the mud and 10 cm of the underlying soil (Simón

et al. 1999). However, characteristics of the Guadiamar

Basin, including the low-profile topography and mosaic
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pattern of contamination, complicated soil recovery. Thus,

a second cleanup activity was undertaken (year 1999),

adding different amendments to the soil to immobilize

pollutants (Querol et al. 2006; Aguilar et al. 2007). These

actions helped decrease contaminants in upper soil layers,

however, pollutant levels increased greatly in deeper

horizons of the soil, enhancing the risk of groundwater

contamination (Kraus and Wiegand 2006; Ordóñez et al.

2006). After these cleanup operations in the spill-affected

area, a reforestation program was initiated (1999–2001) as

part of an effort to designate the area as a natural space, the

Guadiamar Green Corridor.

Between 1999 and 2006, several research teams mon-

itored the accumulation of heavy metals in soils, running

waters, and organisms, including aquatic macroinverte-

brates, fish, amphibians, mammals, reptiles, birds, shrubs,

and trees, to examine the transfer of heavy metals through

the food chain and to assess environmental managing

tasks (Benito et al. 1999; Cabrera et al. 1999; PICOVER

2003; Madejón et al. 2004; Solá et al. 2004; Alcorlo et al.

2006; Olı́as et al. 2006; Taggart et al. 2006). In the pol-

luted area, only one reptile species, rather marginal in the

ecosystem because of its tree-dwelling habits, the Moorish

gecko (Tarentola mauritanica), has been included in

analyses of heavy metal bioaccumulation (Fletcher et al.

2006). Indeed, ecotoxicological studies on reptiles have

been scarce, a trend that has only recently begun to

change (Avery et al. 1983; Hopkins et al. 2000; Linder

and Grillitsch 2000; Campbell and Campbell 2002; Mann

et al. 2006). However, terrestrial reptiles are good bioin-

dicators of high metals concentrations, because they

occupy intermediate or high levels in food chains, fre-

quently have a generalist diet, and have low vagility

(Loumbordis 1997; Campbell and Campbell 2002; Burger

et al. 2004).

During the years 2000–2006, we monitored recoloni-

zation of the restored Guadiamar Green Corridor by the

reptile community. The first colonizer, and most abundant

reptile, was the large psammodromus, Psammodromus al-

girus (Márquez-Ferrando et al. 2008). This small and

opportunistic lizard is a generalist feeder of arthropods,

exhibits fast-growing populations, has a short lifespan

(mean lifespan, 2 years), and has a low vagility (Diaz and

Carrascal 1990; Carretero and Llorente 1997; Salvador

1998). These biological traits make this species a suitable

model for monitoring localized bioaccumulation of heavy

metals in contaminated Mediterranean terrestrial habitats.

The objectives of this study are (i) to assess the quantity

of heavy metals accumulated by P. algirus in the Guadi-

amar Green Corridor, 7–8 years after the mine spill; (ii)

determine sexual, size-related, and interannual differences

in heavy metal accumulation; (iii) detect simultaneous

accumulation patterns of different metals; and (iv)

contribute to the biomonitoring program of the Guadiamar

Green Corridor.

Materials and Methods

Study Site

The Guadiamar River is situated in the southwest of the

Iberian Peninsula (Fig. 1). Within the Guadiamar Basin,

several studies have detected heavy metal accumulation in

organisms from sites directly affected by the Aznalcóllar

mine spill (Solá et al. 2004; Alcorco et al. 2006) and in

nearby sites that were not covered by the toxic mud but

were impacted by atmospheric pollution (Madejón et al.

2006). Thus, we collected P. algirus from three localities

differently impacted by the mine spill. Two study sites are

located within the Guadiamar floodplain (the Las Doblas

bridge [site A] and the Agrio-Guadiamar confluence [site

B]). The third site is located just outside the floodplain

(Villamanrrique Pinewood [site C]). Site A, situated in the

middle of the Green Corridor and 11 km downstream

from the mine (Fig. 1), was severely affected by the spill

and restored following the procedures described above.

Site B was not covered by toxic mud, although it is

located very close to the affected area (0.1 km). Site C,

an unpolluted control site, is located 25 km downstream

of the mine and 2 km outside of the Guadiamar

floodplain.

Lizard Handling

We collected lizards by hand during May–June of 2005

and 2006. Thirty lizards from site A, 15 from site B, and

20 from site C were captured. We measured (snout-vent

length [SVL], to the nearest millimeter) and sexed lizards

(by color pattern and morphology of the femoral pores) to

check for the effect of size and sex in metal accumula-

tion, as has been reported in other reptile species (Linder

and Grillitsch 2000). Nonlethal measurements can be used

to assess pollutant levels in squamate reptiles (Hopkins

et al. 2001; Burger et al. 2005; Fletcher et al. 2006), and

the use of such methods here is advisory to reduce

human-induced alterations, as the Guadiamar Green

Corridor is currently a protected area. Thus, we collected

a tail clip (\30 mm) from each individual to assess levels

of heavy metals. Each lizard was later released at its

capture site. We assumed that the probability of recapture

in the second sampling year in the polluted site was

minimal due to the high population density (Márquez-

Ferrando et al. 2008); furthermore, during the 2006

sampling period, we did not capture individuals with

regenerated tails.
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Laboratory Procedures

We analyzed concentrations of 14 metals (Hg, Sb, Cd,

Cr, Tl, Sn, Ba, Cu, Pb, Sr, Mn, Rb, As, and Zn). Of

these, Pb, Zn, As, Cu, and Cd were abundant in the toxic

mud (Alastuey et al. 1999), whereas the other metals,

although less abundant in the mud, have been analyzed

previously in several organisms of the Guadiamar Basin

and, hence, contribute to a wider overview of heavy

metal mobilization along the food chain (Solá et al.

2004; Fletcher et al. 2006). After collection, tail clips

were cleaned with deionized water and freeze-dried.

Samples were oven-dried at 60�C until they attained

constant weights and digested for 8 h with 2 ml HNO3

and 1 ml H2O2 in Teflon vessels. Samples were brought

to a final volume with deionized water. Metal concen-

trations were measured by mass spectroscopy (Perkin-

Elmer ELAN-6000) by the Scientific-Technical Services

at the University of Barcelona. We included 10 blanks in

digestion and analysis procedures as controls. Results of

element levels are expressed as micrograms per gram on

a dry weight basis. For lizards collected in the control

population we found concentrations below the detection

limits for several metals. In these cases, we used one-

half the detection limits as surrogate values for nonde-

tects (Hesel 1990).

Statistical Analyses

We used nonparametric tests when data did not fit nor-

mality after log transformation and compared heavy metal

concentrations among the three localities with a two-way

ANOVA with rank-transformed dependent variables, con-

sidering sex, location, and their interaction, as factors.

Differences between pairs of localities were tested using

Tukey posthoc tests. We checked the relationship between

body size and heavy metal levels in lizards from site A

using Spearman rank correlations. This analysis was also

used to investigate patterns of accumulation in pairs of

heavy metals. Scores of the correlation matrix were used to

create a cluster tree of similarities among metals according

to Euclidean distances. Thus, metals were organized as

functions of the linkage distances between them, using

single linkage as the aggregation algorithm. In all tests,

significant differences were assumed at p \ 0.05.

Results

Differences Among Localities

We failed to detect difference in lizard size among localities

(mean SVL = 66.6 ± 1.6 mm [site A], 67.0 ± 2.1 mm

Fig. 1 Study area. Maps

showing the location of the

Guadiamar Green Corridor in

the Iberian Peninsula and the

locations of the three study sites

within the Guadiamar Basin

278 Arch Environ Contam Toxicol (2009) 56:276–285
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[site B], 64.0 ± 2.1 mm [site C]; ANOVA test,

F2,48 = 0.69, p = 0.51). We found differences among

localities in all metal concentrations (Table 1). Results of

two-way ANOVA showed differences between populations

(F2,48 = 7.36, p \ 0.01), between sexes (F1,24 = 2.64,

p = 0.02), and in the interaction sex 9 location

(F2,48 = 1.93, p = 0.02) for overall heavy metal concen-

tration. Tukey posthoc test indicated a similar pattern in 10 of

the 14 elements: lizards collected at site A showed higher

levels than did lizards from the other two localities. Lizards

from site A showed 21-, 8-, 7-, 5-, and 4-fold higher con-

centrations of As, Tl, Sn, Pb, Cd, and Cu, respectively,

compared to lizards from site C. We also detected differences

between lizards from site B and lizards from site C in Tl, As,

Hg, Rb, Cu, Pb, and Zn. In each case, lizards from site B had

higher metal concentrations than did lizards from site C.

Sexual, Interannual, and Size-Related Differences

There was no significant sexual difference in body size among

individuals collected at site A (mean SVL, males

68.5 ± 7.8 mm; females 64.5 ± 4.5 mm; ANOVA,

F1,11 = 0.92, p = 0.36). Sexes did not differ in heavy metal

levels except for Cr (Table 2). For this reason, we did not

separate sexes in further analyses. Likewise, there was no

difference in body size in individuals collected in 2005 versus

2006 at site A (mean SVL: year 2005, 66.7 ± 9.0 mm; year

2006, 66.3 ± 1.9 mm; ANOVA test, F1,20 = 0.01, p =

0.91). We did not find significant differences in any metal

concentrations, except for Hg and Sn, in lizards collected in

2005 versus 2006 at site A. Mercury level was higher in lizards

collected during 2006 (Table 3), and Sn levels were lower in

2006. The relationship between metal concentration and liz-

ard size approached statistical significance for several metals,

but was significant only for Cd (Fig. 2).

Correlations Among Metal Concentrations

At site A, metal concentrations were positively correlated

in 41 of 98 pairs of elements (Table 4), indicating that

many elements shared similar accumulation trends (Fig. 3).

The group of Sb, As, and Tl were all strongly associated,

with Spearman coefficients [0.8. A second group was

composed of Cd, Ba, Mn, Cu, and Pb, with correlation

coefficients [0.7. The pair formed by Hg and Rb was

positively correlated, with a value of 0.5, and exhibited

sharp differences with respect to other elements. Finally, a

Table 1 Means and standard

errors of metal concentrations

(lg g-1 dry weight) found in

tails of the lizard

Psammodromus algirus
collected at three locations in

the Guadiamar Basin

(southwestern Spain)

Note: Comparisons were tested

by two-way ANOVA with rank-

transformed data. Site A,

Guadiamar River floodplain,

fully affected by the spill; site

B, Guadiamar River floodplain,

very near the affected area; site

C, Villamanrrique pinewood,

2 km away from the affected

area

Site A (n = 30) Site B (n = 15) Site C (n = 20) F (p)

Hg 0.17 ± 0.02 0.24 ± 0.03 0.09 ± 0.01 12.73 (\0.01) B and A [ C

Sb 0.38 ± 0.06 0.08 ± 0.02 0.17 ± 0.14 19.47 (\0.01) A [ C [ B

Cd 0.14 ± 0.02 0.05 ± 0.02 0.03 ± 0.02 10.85 (\ 0.01) A and B [ C

Cr 2.05 ± 0.16 1.43 ± 0.08 1.41 ± 0.07 1.85 (0.17) –

Tl 0.08 ± 0.01 0.05 ± 0.02 0.00 ± 0.00 88.52 (\0.01) A [ B [ C

Sn 0.20 ± 0.06 0.02 ± 0.00 0.03 ± 0.01 4.09 (0.02) A [ C

Ba 2.88 ± 0.33 1.76 ± 0.38 4.38 ± 0.50 6.45 (\0.01) C [ B

Cu 10.54 ± 1.55 4.25 ± 0.38 3.03 ± 0.17 24.29 (\0.01) A [ B and C

Pb 10.18 ± 1.94 2.60 ± 0.69 2.17 ± 1.00 10.82 (\0.01) A [ B [ C

Sr 10.56 ± 0.89 6.30 ± 1.36 8.86 ± 0.88 1.35 (0.27) –

Mn 13.71 ± 1.90 6.72 ± 0.98 8.32 ± 1.01 1.88 (0.17) –

Rb 7.60 ± 0.81 6.96 ± 0.52 3.38 ± 0.25 29.64 (\0.01) A and B [ C

As 6.26 ± 1.05 1.20 ± 0.23 0.30 ± 0.03 62.72 (\0.01) A [ B [ C

Zn 106.76 ± 4.20 86.92 ± 5.61 85.08 ± 8.45 1.91 (0.16) A [ B [ C

Table 2 Means and standard errors of metal concentrations (lg g-1

dry weight) in tail clips of male and female Psammodromus algirus
collected in the most affected area by the Azanalcóllar mine spill (site A;

see Materials and Methods) of the Guadiamar Basin (southwestern

Spain)

Male (n = 9) Female (n = 5) F (p)

Hg 0.16 ± 0.02 0.20 ± 0.05 0.82 (0.38)

Sb 0.47 ± 0.13 0.34 ± 0.10 0.45 (0.51)

Cd 0.19 ± 0.05 0.06 ± 0.03 2.88 (0.12)

Cr 2.32 ± 0.35 1.37 ± 0.08 5.81 (0.03)

Tl 0.09 ± 0.02 0.09 ± 0.04 0.13 (0.73)

Sn 0.24 ± 0.13 0.08 ± 0.04 0.62 (0.45)

Ba 3.06 ± 0.58 2.13 ± 0.54 0.63 (0.44)

Cu 14.17 ± 4.17 5.92 ± 2.34 2.25 (0.16)

Pb 12.59 ± 3.12 6.18 ± 1.06 1.77 (0.21)

Sr 10.53 ± 1.77 7.99 ± 1.05 1.61 (0.23)

Mn 12.76 ± 1.99 8.13 ± 1.60 4.58 (0.05)

Rb 7.10 ± 1.04 10.89 ± 2.78 2.73 (0.13)

As 8.19 ± 2.23 5.23 ± 1.99 0.42 (0.53)

Zn 102.77 ± 47.46 95.36 ± 11.92 0.68 (0.43)

Note: Differences between sexes were tested by one-way ANOVA

with rank-transformed data
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group consisting of Sr, Cr, Zn, and Sn exhibited very low

correlations with the rest of metals.

Discussion

Differences Among Localities

This study describes heavy metal contamination of terres-

trial organisms from the Guadiamar Green Corridor

following the collapse of the Aznalcóllar mine tailing

pond. Lizards from the most impacted site exhibited higher

metal concentrations 8 years after the spill than did both

lizards collected at a control site and lizards from a nearby

locality not covered by toxic mud. Water quality in the

Guadiamar River increased from 2002 onward (Olı́as et al.

2006), and consequentially, species richness and the com-

munity structure of freshwater organisms improved (Toja

et al. 2003). In contrast, and despite extensive cleaning

actions, the soils of the Doblas (site A) still exhibited high

concentrations of heavy metals 4 years after the spill

because they persist in deeper horizons (Kraus and Wie-

gand 2006). These contaminants are taken up by plants

through their roots and, depending on the mobility of the

chemicals, are moved to vegetative parts (in general to

leaves) of the plants (Madejón et al. 2004). Leaves, as well

as other plant parts, may be eaten by insects that are reptile

prey. Several studies have shown that the principal avenue

of pollutant acquisition by reptiles is through the ingestion

of polluted prey (Hopkins et al. 2001, 2002; Fletcher et al.

2006; Mann et al. 2006). Psammodromus algirus is a

generalist forager on epigeous invertebrates, Colepotera,

Heteroptera, and Araneae being the main prey for popu-

lations of this lizard from southwestern Spain (Pérez

Quintero and Rubio Garcı́a 1997) which live in the upper

levels of soils and can be exposed to several metals, such as

Cd and Pb, in polluted areas (Jelaska et al. 2007). Fur-

thermore, a complementary avenue for acquisition of

contaminants in lizards is the accidental ingestion of sed-

iment particles with food (Fletcher et al. 2006; Mann et al.

2006), very important in P. algirus due to its foraging

habits (Carretero and Llorente 1993).

Arsenic was the toxic element that showed the highest

difference between individuals dwelling in contaminated

and control sites. This metal was very important in the

toxic mud (Alastuey et al. 1999) and its monitoring in the

food chain is potentially critical because of its neurotoxic

effects on a variety of organism (Chang 1996), as well as

its negative effects on the embryonic development in the

Iberian rock lizard (Lacerta monticola cyrenni [Marco

et al. 2004]).

We also detected highly significant differences in Tl

among populations. Thalium persists for long periods in

terrestrial ecosystems and is still detectable at high levels

in the contaminated areas, indicating wide dispersal

through the terrestrial food chain (Madejón et al. 2004;

Sánchez-Chardi 2007), although the exact mechanism of

toxicity is still unclear (Jon Peter and Viraraghavan 2005).

Among the metals analyzed, Zn showed the highest

concentrations in lizard tails, reinforcing the pattern pre-

viously observed in T. mauritanica (Fletcher et al. 2006).

Concentrations of Zn may remain higher than those of

other metals because Zn can bind to specific metallothio-

neins in reptiles, interfering with the organism’s

detoxification processes (Linder and Grillitsch 2000; Lance

et al. 2000). Other metals, such as Mn and Cr, were very

scarce in the sludge and in the surrounding area (Cabrera

et al. 1999; Simón et al. 1999), although we detected

accumulations in lizards (Table 1). These elements are

lithophilic and, therefore, despite occurring in low levels,

became increasingly available to plants as a consequence

of soil acidification following the spill (Madejón et al.

2006).

Although site B was not covered by the toxic sludge,

lizard tails from this site showed intermediate metal con-

centrations (Table 1). Madejón et al. (2006) suggested that

metals may spread from contamination sites via atmo-

spheric transport and deposition of contaminants over

surrounding areas. This process may have been exacer-

bated by the removing of affected soils during clean-up

activities in the 1998–1999 (Querol et al. 2000). Conse-

quently, deposition of aerosolized elements may explain

Table 3 Means and standard errors of metal concentrations (lg g-1 dry

weight) in tail clips of the lizard Psammodromus. algirus collected in

2005 and 2006 in the area most affected by the Aznalcóllar mine spill (site

A; see Materials and Methods) of the Guadiamar Basin (southwestern

Spain)

2005 (n = 20) 2006 (n = 10) F (p)

Hg 0.12 ± 0.01 0.28 ± 0.03 29.95 (\0.01)

Sb 0.43 ± 0.08 0.29 ± 0.09 1.32 (0.26)

Cd 0.14 ± 0.03 0.14 ± 0.03 0.55 (0.46)

Cr 2.20 ± 0.21 1.74 ± 0.21 3.35 (0.08)

Tl 0.08 ± 0.02 0.07 ± 0.02 0.27 (0.61)

Sn 0.28 ± 0.09 0.04 ± 0.01 11.98 (\0.01)

Ba 2.82 ± 0.39 3.01 ± 0.62 0.03 (0.86)

Cu 9.74 ± 2.28 11.05 ± 3.78 0.07 (0.93)

Pb 11.21 ± 2.17 9.20 ± 1.77 0.15 (0.69)

Sr 11.82 ± 1.14 8.04 ± 1.05 3.94 (0.06)

Mn 12.09 ± 1.42 16.96 ± 4.96 0.55 (0.46)

Rb 6.55 ± 0.75 9.70 ± 1.77 3.94 (0.06)

As 6.76 ± 1.35 5.25 ± 1.67 0.37 (0.55)

Zn 109.34 ± 4.94 101.60 ± 7.91 0.93 (0.34)

Note: Differences between years were tested by one-way ANOVA

with rank-transformed data
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Fig. 2 Size-related differences in metal concentrations. Spearman

correlations between metal concentrations (lg g-1 dry weight) in tail

clips of Psammodromus algirus (n = 22) and lizard size (SVL), in the

area most affected by the Azanalcóllar mine spill (Site A, see

Materials and Methods) of the Guadiamar Basin (southwestern Spain)
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the contamination of lizards in areas surrounding the

affected site. Surprisingly, lizards from site B showed

higher levels of Hg than lizards from site A. Mercury was

present in low levels within the sludge (Alaustey et al.

1999; Cabrera et al. 1999), and was of great concern in

aquatic ecosystems (Pain et al. 1998; Sanpera et al. 2000),

but information concerning impacts and transport of this

metal in terrestrial food chains is scarce.

Our results were similar to those reported in whole-body

samples of T. mauritanica from the same study area

(Fletcher et al. 2006). In this gecko, As, Tl, Cd, and Pb

levels were also higher among individuals at contaminated

sites than in control geckos. However, tail samples from P.

algirus had higher concentrations of As, Tl, Mn, Sb, Pb,

and Cu than did whole-body samples of T. mauritanica.

Both studies suggest that reptile species are useful indica-

tors of heavy metal levels in the Guadiamar Green

Corridor.

Sexual, Annual, and Lizard Size Comparisons

In some reptiles, sex can influence metal accumulation due

to differences in physiology, size, and diet (Linder and

Grillitsch 2000; Van Straalen et al. 2001; Hopkins 2002;

Burger et al. 2004; Hopkins et al. 2005). In site A, P. al-

girus did not exhibit sexual size dimorphism, in contrast to

other Iberian populations (Mellado and Martı́nez 1974;

Carretero and Kaliontzopoulou 1990), however, this could

be because in our study a low number of males and females

were compared. Furthermore, this lizard did not display

sexual differences in diet and microhabitat use (Dı́az and

Carrascal 1990; Salvador 1998; Carretero et al. 2002).

Accordingly, it is not surprising that we did not detect

sexual differences in metal concentrations.

Likewise, we did not detect any differences in samples

collected in 2005 versus 2006, even though several authors

have found that metal levels in water, soil, and plants

declined over time in the Agrio and Guadiamar river

floodplains (Madejón et al. 2006; Olı́as et al. 2006; Querol

et al. 2006). It is likely that a longer-term study would be

needed to detect temporal changes in accumulation of

metals by lizards.

Cadmium was the only metal that increased significantly

with lizard size in P. algirus. Cadmium accumulation

seems to be dependent on the duration of metal exposure

(Mann et al. 2007). Correlations between metal concen-

trations and lizard size have been documented for Cd and

Pb in Podarcis muralis and Anolis sagrei, and for Pb and

Cu in Zootoca vivipara (Schmidt 1980, 1988; Burger et al.

2004). In general, larger individuals can accumulate higher

amounts of pollutants, although considerable differences

exist among species based, at least in part, on species

longevity (Santos et al. 1999; Linder and Grillitsch 2000).

Psammodromus algirus is a short-lived species and all

individuals we captured were likely between 1 and 2 years

old. Thus, the lack of correlation with lizard size for most

heavy metals is not surprising, since the correlation

between size and longevity in adults is very weak in P.

algirus (Carretero, pers. commun.).

Relationships Among Elements

In general the presence of simultaneous heavy metals

within an ecosystem favors the existence of interactions

between them (Beyersmann 1991). In our study high,

positive correlations among eight elements suggest that

these metals were accumulated simultaneously. A similar

pattern occurred in T. mauritanica from the Guadiamar

River (Fletcher et al. 2006). Low correlations between Sr,

Cr, Zn, and Sn and the rest of the heavy metals suggests

that these elements may be acquired or taken up differently

than the first group of metals are, although whole-body

analyses of metal concentrations might yield different

results and are necessary to clarify the pattern of correla-

tion of heavy metal accumulated by reptiles.

Conclusion

Over recent years several studies have focused on bioac-

cumulation of heavy metals by wildlife in the Guadiamar

Green Corridor following the release of mining by-prod-

ucts in this area. Our study adds to the knowledge of this

issue in terrestrial animals and demonstrates that, even

8 years after a toxic spill and subsequent cleanup activities,

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Linkage Distance

Sn
Zn
Cr
Sr
Pb
Cu
Ba
Mn
Cd
As
Tl
Sb
Rb
Hg

Fig. 3 Correlations among metal concentrations. Cluster tree that

show the linkage (Euclidean distance) between metal concentrations

by single linkage as aggregation algorithm in tail clips of the lizard

Psammodrolus algirus in the area most affected by the Azanalcóllar

mine spill (site A; see Materials and Methods) of the Guadiamar

Basin (southwestern Spain)
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the terrestrial food chain still demonstrates exposure to

high levels of heavy metals. Lizards from contaminated

sites showed significantly higher concentrations of several

metals than did lizards from noncontaminated sites.

Because of their biological traits (low vagility, middle and

upper position in the trophic food chain, generalist diet,

rapid population turnover, short lifespan), we suggest that

small reptiles such as P. algirus are good bioindicators of

local heavy metal contamination (for the same study area

see also Fletcher et al. 2006). Long-term studies of trace-

element accumulation in aquatic and terrestrial biota are

necessary to understand how pollutants move across food

chains, and to assess the continued impact of the mining

spill on Guadiamar Green Corridor wildlife.
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dromus algirus (Linné, 1758) Lagartija colilarga. In:

Pleguezuelos JM, Márquez R, Lizana M (eds) Atlas y Libro

Rojo de los Anfibios y Reptiles de España. Segunda impresión.

Dirección General de Conservación de la Naturaleza-Asociación

Herpetológica Española, Madrid, p 260
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accident in Aznalcóllar. Sci Total Environ 242:3–11

Hesel DR (1990) Less than obvious: statistical treatment of data

below the detection limit. Environ Sci Technol 39:419–423

Hopkins WA (2000) Reptile toxicology: challenges and opportunities

on the last frontier in vertebrate ecotoxicology. Environ Toxicol

Chem 19:2391–2393

Hopkins WA, Roe JH, Snodgrass JW, Jackson BP, Kling DE, Rowe

CL, Congdon JD (2001) Nondestructive indices of trace element

exposure in squamate reptiles. Environ Pollut 115:1–7

Hopkins WA, Roe JH, Snodgrass JW, Staub BP, Jackson BP,

Congdon JD (2002) Effects of chronic dietary exposure to trace

elements on banded water snake (Nerodia fasciata). Environ

Toxicol Chem 21:906–913

Hopkins WA, Stauba BP, Baionnoa JA, Jacksona BP, Talentb LG

(2005) Transfer of selenium from prey to predators in a

simulated terrestrial food chain. Environ Pollut 134:447–456

Hsu MJ, Selvaraj K, Agoramoorthy G (2006) Taiwan’s industrial

heavy metal pollution threatens terrestrial biota. Environ Pollut

143:327–334

Jelaska LS, Blanus M, Durbes P, Jelaska SD (2007) Heavy metal

concentrations in ground beetles, leaf litter, and soil of a forest

ecosystem. Ecotoxicol Environ Saf 66:74–81

Jon Peter AL, Viraraghavan T (2005) Thallium: a review of public

health and environmental concerns. Environ Int 31:493–501

284 Arch Environ Contam Toxicol (2009) 56:276–285

123



Krauss U, Wiegand J (2006) Long-term effects of the Aznalcóllar
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