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Environmental temperatures shape thermal
physiology as well as diversification and
genome-wide substitution rates in lizards
Joan Garcia-Porta et al.#

Climatic conditions changing over time and space shape the evolution of organisms at

multiple levels, including temperate lizards in the family Lacertidae. Here we reconstruct a

dated phylogenetic tree of 262 lacertid species based on a supermatrix relying on novel

phylogenomic datasets and fossil calibrations. Diversification of lacertids was accompanied

by an increasing disparity among occupied bioclimatic niches, especially in the last 10Ma,

during a period of progressive global cooling. Temperate species also underwent a genome-

wide slowdown in molecular substitution rates compared to tropical and desert-adapted

lacertids. Evaporative water loss and preferred temperature are correlated with bioclimatic

parameters, indicating physiological adaptations to climate. Tropical, but also some popu-

lations of cool-adapted species experience maximum temperatures close to their preferred

temperatures. We hypothesize these species-specific physiological preferences may con-

stitute a handicap to prevail under rapid global warming, and contribute to explaining local

lizard extinctions in cool and humid climates.

https://doi.org/10.1038/s41467-019-11943-x OPEN

Correspondence and requests for materials should be addressed to M.V. (email: m.vences@tu-braunschweig.de) or to K.C.W.V. (email:
k.wollenberg-valero@hull.ac.uk). #A full list of authors and their affiliations appears at the end of the paper.

NATURE COMMUNICATIONS |         (2019) 10:4077 | https://doi.org/10.1038/s41467-019-11943-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:m.vences@tu-braunschweig.de
mailto:k.wollenberg-valero@hull.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The intricate relationships between biodiversity and climate
have intrigued scientists since the pioneering work of
Alexander von Humboldt, over 200 years ago1. Climatic

conditions, and their change over time and space, influence
organisms at multiple levels2,3. For instance, numerous traits
originated through adaptation to climate4, present-day biotas
have been shaped by paleoclimate5, and salient climate-related
macroecological patterns such as the tropical peak of species
richness6 apply to organisms across the entire tree of life.

Squamates (lizards, amphisbaenians, snakes), are no exception
to this rule7, as is evident from their spectacular diversity of form
and function in tropical rainforests and overall rareness in cooler
parts of the globe. Species richness in textbook examples of
adaptive radiations such as Anolis lizards peaks in the tropics8

and overall, far fewer squamates inhabit the cool areas of the
globe9. Yet, lizards are different from other vertebrates in
that their species richness is also high in arid bioclimatic zones of
Australia, Africa, and central Asia9. Lizards are typically seen as
heliotherms (i.e., gaining energy from controlled sun exposure),
and this active thermoregulation might have favored the evolu-
tion of a number of species-rich lizard clades in seasonal and
temperate biomes.

Many species of lizards worldwide are facing decline, as a
probable consequence of a global temperature increase combined
with changes in precipitation patterns, habitat loss and frag-
mentation10. Theory predicts that declines should be especially
acute in (i) forest-dwelling tropical lizards which often live close
to the upper limit of their physiological tolerances and are ther-
moconformers with a low potential for behavioral thermo-
regulation, unable to compensate for rising temperatures10,11; and
(ii) montane microendemics that may be driven to extinction
when upslope range shifts become impossible and competitor
species move to higher elevations, or when water loss rates and
thus physiological stress increase10,12. Understanding physiolo-
gical constraints under which a species operates13, and the
paleoclimatic history under which these constraints evolved, is
crucial to improve our ability to predict its response to future
climatic change.

A lizard group particularly suitable for integrative research on
climate adaptation, combining paleorecords, genomics, physiol-
ogy and mechanistic models, is the Old World family Lacertidae.
Lacertids are the most diverse and ubiquitous squamates in the
Western Palearctic14 containing around 340 species of rather
conserved morphology. As predominant lizards in Europe, they
have become a well-studied model group in hundreds of phy-
siological, ecological and evolutionary studies, for instance
yielding fundamental insights into evolutionary adaptation in
diet, morphology, and metabolism15,16. Lacertids inhabit diverse
habitats, from rainforests to deserts, at sea level and on high
mountains. Some species occur in extremely hot and xeric
environments in the Namib Desert16 while one species (Zootoca
vivipara) has the largest and northernmost distribution of all
terrestrial squamates, reaching subarctic regions17,18. Because
numerous lacertid genera are predominantly distributed in tem-
perate zones that have experienced dramatic climatic changes
during the Cenozoic, it can be expected that changing climatic
conditions have had profound impacts on their evolutionary
history.

In this study we aim to understand if and how the extra-
ordinary diversity of past and present climatic environments
experienced by the Lacertidae has shaped their species diversity,
physiology, and molecular evolution. We assemble a vast set of
novel phylogenomic, physiological and distributional data, and
integrate these to provide a wider picture on the effects of climate
and climate change on these lizards, and on biodiversity in
general.

We set a first goal to achieve a reliable understanding of the
evolutionary relationships of lacertids, as a baseline for all further
macroevolutionary analyses, using phylogenomic approaches.
Lacertids are phylogenetically divided into two major clades, the
Gallotiinae and the Lacertinae, and the latter are divided into two
clades: the tribe Eremiadini of mainly African-Near Eastern dis-
tribution, inhabiting warmer climates, and the tribe Lacertini of
mainly European and Asian distribution in cooler climates.
Despite enormous progress in lacertid systematics since the pio-
neering work of Arnold19 and colleagues, the phylogenetic rela-
tionships within Lacertidae are still incompletely resolved14,18,20.
Very short phylogenetic branches at the base of the Lacertini
suggest rapid diversification, jeopardizing phylogenetic
inference20,21. Lacertid divergence times are controversial as well;
for instance, estimates of the Lacertini crown age-range between
15 and 47Ma14,18,20,22.

Secondly, we analyze how the contemporary climatic condi-
tions experienced by lacertids are related to their physiological
and genomic adaptations. These lizards in general are excellent
thermoregulators and thus are expected to compensate behavio-
rally for suboptimal environmental temperatures23–25; they
also have been observed to adapt quickly to novel temperature
regimes26. A study of Zootoca vivipara at its northernmost
margin found that its preferred temperature was not available in
the habitat during much of the day, so thermoregulation (in this
case heliothermy) would have been selectively advantageous over
thermoconformity despite its activity cost17,27. We expect that
such heliotherms will be most successful in seasonal environ-
ments and that this is reflected in their species richness patterns.
Considering records of variation of thermal tolerances and pre-
ferences among lacertid species28, we also predict that their
preferred and field active body temperatures, across species, will
most strongly be correlated with environmental solar radiation.
At the molecular level, change can be expected to accelerate with
increasing temperature, and we hypothesize such increased sub-
stitution rates would affect the entire genome.

At the macroevolutionary level, we expect that paleoclimate
acts as a strong modulator of the adaptive evolution and diver-
sification of lacertids. Given the physiological constraints limiting
high-temperature tolerances of animals, the process of adaptation
to cold rather than heat would be expected to play a major role13.
We therefore predict a prevalent origin of thermal adaptations
during episodes of global cooling. We also predict that the cli-
matic changes in the Cenozoic will have had a great impact on
diversification rates—in particular, episodes of warming should
have led to range fragmentation of cool-adapted species and
thus have increased diversification rates via allopatric speciation.

Our analysis finds that cold-adapted species have on average
smaller distribution ranges, that physiological traits and mole-
cular substitution rates of lacertid species are closely linked to the
climatic conditions they experience, and places the origin of these
thermal niche adaptations in a period of progressive global
cooling. The extinction risk of tropical lizards in the face of
anthropogenic climate change has been emphasized previously,
and the pervasive physiological adaptations to cold and often
small distribution ranges of many lacertids identified herein cast
doubt on the ability of these cold-adapted lacertids to persist in
increasingly warmer and drier environments.

Results
Phylogenomic relationships of lacertid lizards. The phyloge-
nomic analyses reconstructed the evolutionary relationships
among the main groups of lacertid lizards with high support.
Concordant results were obtained from analyses of two largely
independent, newly acquired datasets (Fig. 1): (i) 6269
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protein-coding nuclear loci for 21 lacertid species obtained by
adding novel RNA sequencing (RNAseq) data to a previously
established set of vertebrate loci29, and (ii) 324 anonymous
nuclear loci for 65 species obtained by anchored hybrid enrich-
ment sequencing (AHE)30. Importantly, partitioned maximum
likelihood (ML) concatenation and coalescent species tree

analyses, performed separately on each dataset, recovered largely
congruent tree topologies (Fig. 1, Supplementary Fig. 2S). All
nodes in the RNAseq-ML tree received full bootstrap support,
and the same was true for most nodes in the AHE-ML tree. Gene
jackknifing proportions (GJP)29,31, which provide a more strin-
gent test for monophyly than non-parametric bootstrapping,
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delivered high support for most nodes in the trees (Supplemen-
tary Figs. 6 and 7).

The phylogenomic analyses unambiguously recovered the
monophyly of all included genera, the subfamilies Gallotiinae
and Lacertinae, and the tribes Lacertini and Eremiadini.
Furthermore, we also confirm a series of clades within the
Lacertini with strong support, namely those containing
(i) the large-sized and green-colored Lacerta and Timon14,20,32,
(ii) the genera Darevskia and Iranolacerta distributed in the
highlands of Iran, Asia Minor and the Caucasus20, (iii) Algyroides
and Dinarolacerta20,21, (iv) the morphologically and ecologically
disparate monotypic genera Archaeolacerta (a Tyrrhenian rock-
dwelling lizard), Scelarcis (a North African rock-dwelling lizard),
Teira (endemic to the volcanic Madeira archipelago in the
Atlantic Ocean), and Zootoca (the most widespread of all lizards,
associated with mesic terrestrial habitats20). The latter two clades
were also supported by high GJP values, whereas the Darevskia
+Iranolacerta clade received only moderate GJP support
(Supplementary Figs. 6 and 7).

Other clades in the tree are unprecedented or have been
controversial among previous studies. Most importantly, all
phylogenomic analyses supported the species-rich Mediterranean
genus Podarcis as sister group to all other Lacertini, and the
North African montane endemic Atlantolacerta as sister group to
all other Eremiadini, in both cases also validated by high GJP
values. The placement of (i) Apathya sister to the Lacerta+Timon
clade, (ii) Takydromus sister to Darevskia+Iranolacerta, (iii)
Dalmatolacerta sister to Algyroides+Dinarolacerta, and (iv)
Hellenolacerta sister to Iberolacerta, received comparatively
weaker support from GJP, despite high bootstrap values and
congruence of summary coalescent and concatenation analyses
for all except the last of these clades (Supplementary Figs. 6 and
7). Gene jackknifing thus indicated these clades were not strongly
supported by the data. However, their recovery by both AHE and
RNAseq analysis, and partly by both concatenated and summary
coalescent approaches, suggests they might correctly reflect
evolutionary relationships.

To increase species-level representation, we built a large-scale
lacertid phylogenetic tree by combining the RNAseq and AHE
datasets with DNA sequences of four mitochondrial and one
nuclear loci traditionally used in lacertid phylogenetics, selected
to maximize taxon coverage. The new dataset, totaling 11,175,421
aligned nucleotide positions (6598 loci) for 262 species (see
Supplementary Table 10 for further alignment details and amount
of missing data) was analyzed by partitioned ML. Based on a
newly compiled set of 89 morphological characters that were in
part obtained via newly generated CT-scans, we estimated the
phylogenetic position of seven fossil lacertid taxa and subse-
quently time-calibrated this 262-species tree (Supplementary Figs.
10 and 11) using a penalized likelihood approach. Crown ages
were recovered for Lacertidae in the Paleocene at 86.6 Ma, for
Gallotiinae at 35.0 Ma, for Lacertinae at 61.3 Ma, and for
Eremiadini and Lacertini at 57.1 and 37.6 Ma.

Dynamics of climatic and physiological evolution. To test
whether the key physiological traits of extant Lacertidae reflect
adaptation to the climatic conditions they experience within their
range, bioclimatic variables33 for all 262 species in the timetree
were extracted from a newly compiled, georeferenced set of
39,414 lacertid occurrence points. We determined whether the
spatial arrangement of current bioclimatic niches predicts lacertid
species richness, using data from the Global Assessment of
Reptile Distributions project34 in mixed Spatial Auto-Regressive
(SAR) models. We found species richness to be low in aseasonal,
equatorial environments (Supplementary Fig. 1), positively

associated with solar radiation and negatively with radiation
seasonality (Supplementary Table 3). Lacertini richness peaked
along the southern margin of temperate regions of Europe,
northern Africa and Asia whereas most species of Eremiadini
occurred in rather arid regions of northern and southern Africa
and Asia (Supplementary Fig. 1).

Preferred body temperature (Tpref) and instant evaporative
water loss (IWL) were independently assessed for 61 and 51
lacertid species, respectively. Median values per species were
compiled from experiments with 792 and 626 individuals,
respectively, almost exclusively males during their reproductive
season. Phylogenetic mapping and ancestral reconstruction of
Tpref and IWL showed that, in general, species in Eremiadini have
higher Tpref and lower IWL than Lacertini (Supplementary
Fig. 12). The Eremiadini ancestor likely inhabited warmer regions
compared to Lacertini (2393 vs. 1374 h yearly hours >30 °C;
Figs. 2a and 3a). Several Eremiadini subclades independently
colonized either warm or temperate climates in different
geographic regions (e.g., the North African/Asian Acanthodacty-
lus adapted to desert environments independently from southern
African genera), whereas in the Lacertini, only some Takydromus
colonized warm (tropical) areas. Not surprisingly, almost all
of the bioclimatic variables were characterized by a strong
phylogenetic signal in the Lacertidae, as well as in separate
analyses of Lacertini and Eremiadini, suggesting that closely
related taxa inhabit similar bioclimatic niches (Supplementary
Table 4). We also found a comparatively low but statistically
significant phylogenetic signal for Tpref (Blomberg K= 0.46, P=
0.009) in Lacertidae. Tpref also had a significant phylogenetic
signal in Eremiadini (K= 0.87, P= 0.033) but not in Lacertini
(K= 0.43, P= 0.213). No significant phylogenetic signal was
found for IWL in Lacertidae (K= 0.26, P= 0.13) and Lacertini
(K= 0.32, P= 0.492), while this trait could not be tested in
Eremiadini due to the scarcity of available data.

We tested whether physiological traits of lacertids are related to
the current bioclimatic properties of their ranges, measured as
median values of bioclimatic variables for all occurrence records
of a species. Informed by current knowledge on activity
temperatures of lacertids (Supplementary Methods), global
estimates of microclimate35 were used to assemble new geospatial
layers reflecting (i) the number of yearly hours >30 °C and (ii) the
number of yearly hours with a solar radiation >100W/m2 and a
temperature >4 °C. Initial response screening (Supplementary
Table 5) revealed that a species’ Tpref is correlated with various
bioclimatic variables characterizing its current distribution range,
whereas only weak bioclimatic associations were found with IWL.
For Tpref, our biologically informed variable of yearly hours
>30 °C was among the variables with strongest effect sizes and
was therefore used for further analysis. In phylogenetic regres-
sions across Lacertidae (Supplementary Table 6), this variable was
positively related to Tpref (P < 0.0001; significant also after
Bonferroni correction) and negatively related to IWL (P=
0.021). In separate analyses these trends were found in both
Lacertini and Eremiadini, but only the relation of IWL with yearly
hours >30 °C in Eremiadini was statistically significant (phyloge-
netic regression; P= 0.0335). Body temperatures (Tb) of active
lizards from a published compilation36 complemented by our
data (Supplementary Table 13) were correlated with Tpref

(phylogenetic regression; P < 0.0001), and IWL with field Tb
(phylogenetic regression; P= 0.0058) but, possibly due to missing
data, not with Tpref (phylogenetic regression; P= 0.2089).

Multiple phylogenetic regressions were applied against a set of
10 bioclimatic variables selected for least autocorrelation to
understand their interaction in predicting physiological traits of
lacertids. The analyses (Supplementary Table 7) confirmed that
Tpref was related to bioclimate and identified solar radiation
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Fig. 2 Associations between environmental temperature, physiology, and molecular substitution rates of lacertids. a Time-calibrated phylogeny derived
from partitioned ML analysis of the combined dataset for 262 lacertid species. Colors represent character state reconstruction for yearly hours >30 °C of
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(hours >4 °C and >100W/m2), and in Lacertini also temperature
(hours >30 °C), as significant drivers of Tpref variation. IWL was
not significantly related to any bioclimatic variable.

Over time, average values of Tpref and yearly hours >30 °C
consistently decreased starting 35Ma, documenting the increas-
ing proportion of Lacertini species adapted to cold (Fig. 3a).

Several species of lacertids are distributed over wide ranges
whereas others are microendemic to specific mountain ranges,
and consequently the breadth of the bioclimatic envelopes they
experience within their ranges varies widely. In phylogenetic
regressions, range sizes were influenced by body size (P= 0.0231),
hours >100W/>4 °C (P= 0.0496), and hours >30 °C (P= 0.0010)
(Supplementary Table 6). Only the latter comparison remained
significant after Bonferroni correction, suggesting that species in
warmer environments occupy larger distribution ranges.

Climate-related molecular evolution. Variation of branch
lengths on the lacertid trees (Fig. 1) is suggestive of disparate
molecular substitution rates among clades. Phylogenetic regres-
sion on the 262-taxon tree (Supplementary Table 6) showed that

root-to-tip paths (an estimate of molecular substitution rates37)
were strongly positively predicted by yearly hours >30 °C (P <
0.0001). This relation was found to be significant also within
Lacertini (P= 0.0035), and Eremiadini (P= 0.0048), and in
Lacertidae was maintained in a multiple phylogenetic regression
(P= 0.0310) which also revealed a weak negative relation with
precipitation in the wettest week (P= 0.0187). Phylogenetic
regression also revealed a positive association of root-to-tip paths
with Tpref (P= 0.0124; Supplementary Table 6). As molecular
substitution rates in many animals, including squamates38, can be
influenced by body size (resulting from a generation time effect,
as age at maturity increases with body size38), we tested if the
observed disparity in substitution rates might be influenced by
this variable. We found maximum body size not to be a sig-
nificant predictor of root-to-tip paths (Supplementary Table 6)
and the influence of bioclimate (yearly hours >30 °C) was
maintained when controlling for body size (Supplementary Table
7). To understand whether this relation is driven by substitution
rates of particular genes we first verified that also in the RNAseq
tree, species from hotter environments had longer root-to-tip
paths (linear regression, R2= 0.46, P= 0.0010; see branch lengths
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as in Fig. 1a and Supplementary S13. b BAMM-estimated speciation rates through-time plot and best-fit model of speciation rates plotted on circle tree of
Lacertinae. Color density in red shading denotes confidence on diversification rate reconstructions at any point in time. c, d Plots of climatic disparity
through-time (DTT), for the first and second principal components (PC1/PC2) of a phylogenetic principal component analysis (PPCA) of seven bioclimatic
variables across lacertids, showing an increase of climatic disparity in PC1 around 45‒30Ma that coincides with the onset of Lacertini diversification. The
dashed line indicates the median subclade DTT based on 1000 simulations under a Brownian motion model. The gray shaded area indicates the 95% DTT
range for the simulated data
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in Fig. 1a). We then calculated the same regression for each of the
gene trees deriving from those 5878 protein-coding nuclear loci in
the RNAseq dataset for which the outgroup was available. In 5728
genes the regression slope was positive (linear regression, statis-
tically significant at P < 0.05 in 3499 genes), in 150 genes it was
negative (significant in only seven genes). In gene trees recon-
structed from the respective amino acid sequences, the slope was
positive in 4745 (significant in 1387) and negative in 1132 (sig-
nificant in 26). None of the seven genes with deviant signal at the
nucleotide level was under selection (Codon-based Z test of
selection of overall averages; non-neutrality rejected at P <
0.0001), and visual inspection of the alignments of these genes did
not reveal any amino acid substitutions common to unrelated
species from cold or hot environments, respectively.

Dynamics of climatic niche disparity and diversification. We
inferred the disparity of climatic niches associated with lacertid
evolution represented by the first two factors of a phylogenetic
principal component analysis (accounting for nearly 50% of the
total variance; see Supplementary Table 9 for factor loadings).
These were derived from the ten least-correlated bioclimatic
variables from the lizards’ current ranges, with high loadings of
temperature and radiation on the first factor (PC1) and pre-
cipitation on the second (PC2). The disparity plots (Fig. 3c, d)
suggested that disparity of PC1 started exceeding the median of
the Brownian Motion (BM) simulations just before the onset of
Lacertini diversification about 40Ma. In both PC1 and PC2 the
increase in climatic disparity became more obvious after 20Ma,
coinciding with a period of intense cooling (Fig. 3a); in PC1
the disparity values exceeded those of the BM simulation con-
fidence intervals in more recent times <10Ma. Both for PC1 and
PC2 we found absolute value of standardized independent con-
trasts were negatively correlated with node ages (P= 0.02 for
both PCs; Supplementary Fig. 13).

Analyses of diversification dynamics39 supported models with
speciation rate decreasing through time with best-fit for all three
clades tested (Lacertinae, Lacertini, and Eremiadini). However, we
found differences between tribes regarding the covariation of these
decreases in speciation with the paleotemperature across the
Cenozoic. In Eremiadini, the best-supported model implies a
strong covariation with temperature, with constant extinction
through time, while in the younger Lacertini the best-supported
model specified that both speciation and extinction rates decreased
towards the present, with low support for all models that specified
covariation between speciation/extinction rates with temperature
(Supplementary Table 8). A complementary analysis using
Bayesian Analysis of Macroevolutionary Mixtures (BAMM)40

despite large uncertainty in the deep past suggested that overall
net diversification rate has declined since around 50Ma (i.e., since
the origin of Eremiadini). However, this analysis also suggested an
intermittent episode of sharp increase in diversification rate from
30 to 25Ma representing the early burst of Lacertini diversification
(Fig. 3b, Supplementary S13) and coinciding with a mid-Oligocene
temperature increase (Fig. 3a). Assuming allopatric speciation in
lacertids (Supplementary Table 16), this agrees with the hypothesis
of range fragmentation and thus diversification of cool-adapted
species by past global warming.

Thermoregulation and thermal safety margins. As Tpref con-
verges on ambient daily maximum air temperature (Tmax), a
typical heliothermic lizard can assume a more thermoconforming
behavior. In lacertids, the difference between Tpref and Tmax

averaged across months, indicates larger differences between Tpref
and Tmax (typical of heliotherms) in species outside the equatorial
tropics (Supplementary Fig. 17). Instead, for many occurrence

records at absolute latitudes <30, Tpref falls very close to Tmax,
suggesting that tropical lacertids need to spend less time ther-
moregulating and have narrower thermal safety margins when
confronted with global warming. Populations of cool-adapted
species differ widely in this thermal safety margin metric, and
for one of these, Zootoca vivipara, recently extirpated populations
had distinctly lower values than other, extant populations. For
this species, extinctions have been recorded at sites where the
thermal safety margin is less than ~12 °C (Supplementary
Fig. 17).

Discussion
This study provides a reliable, well-supported hypothesis of the
phylogenetic relationships among the Lacertidae, and thereby
contributes a critically missing baseline for a plethora of ongoing
research projects in this intensively studied Palearctic group of
lizards. Despite lacertids (and in particular Lacertini) being a clear
example of rapid diversification21, the congruence of multiple
phylogenomic approaches in our study suggests the estimated
phylogeny is accurate and robust. In particular, the concordance
between the topologies obtained by concatenation and summary
coalescent approaches—not a self-evident pattern41—lends sub-
stantial confidence to our phylogenomic resolution of the deep
relationships among lacertids. We found strong support for
clades that contain morphologically, biogeographically and eco-
logically distinct taxa20, of which perhaps most striking is the
association of the ecologically and morphologically disparate
genera Archaeolacerta, Teira, Scelarcis, and Zootoca. Overall, our
results confirm the efficacy of phylogenomics to infer systematic
relationships that have long evaded resolution.

Thermoconformity is predicted to have low selective benefits
under cool temperature regimes17,27 and it is reasonable to
explain the success of lacertids in such environments with their
obvious thermoregulatory, heliothermic basking behavior28,
although previous work has characterized some lacertid species as
partial thermoconformers42. To facilitate a more efficient ther-
moregulation in cooler environments, an evolutionary trend
towards lower Tpref can be expected.

In agreement with these hypotheses, our spatial analysis found
lacertid species richness positively associated with solar radiation,
and key physiological traits of extant Lacertidae correlated with
the climatic conditions they experience, indicating they have
physiologically adapted to these climatic conditions. The phylo-
genetic signal of Tpref across Lacertidae, in agreement with pre-
vious studies across lizards43, supports that Tpref adaptations are
characteristic of major clades that diverged early in lacertid
evolution.

Our lacertid analysis provides evidence for a correlation of
physiology and climate across an entire squamate clade. Although
this pattern in itself is in agreement with our hypotheses and thus
not surprising, the consistency by which environmental tem-
perature was correlated with other traits in our family-wide
analysis is striking. For instance, environmental temperature was
correlated to experimental Tpref, a biologically relevant trait
influencing the temperatures under which these lizards are active
in the field, as confirmed by its close association to independently
measured field Tb. Also, the spatial extent of a species’ distribu-
tion area was strongly related to environmental temperature,
again suggesting this variable profoundly influences lacertid
biodiversity patterns. On the contrary, we found only a weak
correlation between range size and body size among lacertid
species although such range size-body size relationships prevail in
other organisms44,45, including reptiles46. Environmental tem-
perature has furthermore affected molecular evolution of lacer-
tids. Substitution rates were significantly slower in lineages
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evolving in cool climates (Fig. 2d, e). This exceptionally clear
pattern conforms to the metabolic theory of ecology47, and was
not observed in a large-scale study across squamates47,48. In a
previous phylotranscriptomic study of vertebrates29, the included
lacertid (Podarcis liolepis) had a relatively short branch compared
to other squamates, thus suggesting its substitution rates are
slower than the squamate average. In our study, Podarcis likewise
was among the taxa with relatively short root-to-tip paths. We
hypothesize that this condition is derived, and indicative of a
genome-wide slowdown of substitution rates in those lacertids
that adapted to cooler conditions, rather than an acceleration in
heat-adapted species, which contrasts with previous findings in a
cold-adapted agamid lizard that has accelerated substitution rates
in several genes49.

Taking advantage of our phylotranscriptomic dataset, we ver-
ified that the positive correlation between environmental tem-
perature and substitution rates affects the vast majority of coding
genes across the genome, with only very few genes showing an
inverse relationship (i.e., accelerated rates in cool environments;
Fig. 2e). This pattern most likely can be explained by an influence
of metabolic rate on mutation rate47, and we did not find any
indication that deviations from the overall pattern were caused by
selection. As in other organisms50, the genome-wide differences
in substitution rates were also found at the amino acid level and
therefore might have adaptive consequences. Decelerated muta-
tion rates could reduce the speed by which genetic variation arises
and thus influence standing genetic variation, which probably
determines in great part the ability for fast adaptation10,51. It
therefore would be tempting to speculate that the detected slow
substitution rates in temperate lacertids could be associated with a
reduced adaptive potential to environmental change, but fast
climate adaptation has been observed in temperate lacertids
experiencing drastically changed climatic conditions26,52. The
possible macroevolutionary consequences of the observed slow-
down in substitution rates of cold-adapted species, and the role of
variation in protein-coding vs. non-coding loci warrant
further study.

In comparison with the very clear temperature-related patterns
encountered in our dataset, the signal of humidity regimes
appeared weaker. Precipitation-related variables usually played a
secondary role predicting physiological and genomic traits or
range sizes, and we found that IWL was phylogenetically less
conserved than Tpref (as indicated by the absence of a significant
phylogenetic signal in IWL), despite IWL being correlated to
climate. This may indicate a stronger selection pressure on and
faster adaptation of this key physiological trait, which might be
less efficiently buffered by behavior than thermal preferences.
This hypothesis would predict that intraspecific local adaptation
of widespread lacertids should be more strongly reflected in
variation of IWL than Tpref, which could be easily tested in future
meta-analyses. In addition, it will be paramount to obtain IWL
data for more arid-adapted desert species in the Eremiadini, as we
assume that sampling gaps might have obscured possible signals
in our data.

Lacertids, and in particular the Lacertini, stand out among
major squamate clades in having diversified largely outside
equatorial regions and ranging deep into the temperate zone.
Adaptation to cool environments has been predicted to be a
primary driver of lizard evolution13 and will have repercussions
on their performance in future climates. Our phylogenomic tree
confirms that multiple lacertid clades have independently con-
quered cold environments. These clades include the Lacertini
genus Zootoca, whose range extends into the Subarctic, as well as
the montane genera Iberolacerta, Darevskia, and Dinarolacerta.
Within the Eremiadini, they include Atlantolacerta and Eremias.
These and other lineages have adapted to climates with 0–700 h

above 30 °C per year, and most of them diverged from other
genera after the Eocene-Oligocene boundary. This epoch coin-
cided with a large-scale faunal turnover and aridification in some
parts of the world53,54 but not in others55,56. In Europe, this
period probably was relatively cool, humid and stable. To
understand adaptation processes in the sub-Saharan Eremiadini
clades that experienced this aridification, we would need to fill the
gaps of ecophysiology data on taxa that secondarily entered cold,
mesic environments (i.e., Tropidosaura, Australolacerta, and
Vhembelacerta).

We hypothesize that the current bioclimatic niches of most
Lacertini, and thus probably their current physiology represented
by a relatively low Tpref, originated in the Oligocene and was
further shaped in the continued cooling at the end of the Mio-
cene. During this period, we detected an increasing disparity of
bioclimatic niche diversification (Fig. 3c, d) combined with
decreased average values of Tpref and thermal niche across
lacertids (Fig. 3a). This scenario of pervasive cold adaptation in
Lacertini is consistent with the fossil record in Europe, where
several lizard groups disappeared while lacertids persisted
throughout the Oligocene-Miocene.

Our analysis reveals a strong association of present environ-
mental temperature to physiological traits (Tpref, IWL), molecular
substitution rates, range sizes, and diversification of lacertids. The
current trend of rapidly rising temperatures will likely alter the
adaptations of preferred to environmental temperatures that have
been shaped through millions of years. The capacity of species to
buffer these new conditions through behavioral responses
remains unknown.

It is possible that because of their small thermal safety margins,
many tropical lacertids may be perilously close to at least local
extinction events under future climate scenarios where Tmax

would exceed Tpref. This suggests a need for conservation
assessment and thermophysiological work especially on the lar-
gely understudied lacertid taxa occurring in aseasonal tropical
environments. Yet, current declines among lacertids seem to
especially affect specialists inhabiting montane, and/or cool and
moist environments10,57 such as Z. vivipara (Supplementary Fig.
17b), whereas species with very high Tpref such as Pedioplanis
husabensis so far appear to remain unaffected by contemporary
climate change25. As one hypothetical explanation, species in cool
environments also are characterized by high IWL and thus may
be forced to thermoregulate sub-optimally or become inactive
when conditions become too dry. Despite their low Tpref, they will
rarely be able to behave as full thermoconformers in temperate
environments. This could explain declines detected in species
such as Algyroides marchi and Podarcis carbonelli58. In the vivi-
parous populations of Z. vivipara, the species with highest IWL in
our dataset, we speculate that this handicap could be exacerbated
in gravid females as these require optimal thermoregulation to
ensure embryonal development for a longer period of time than
oviparous species. Many cold-adapted species furthermore are
restricted to very small ranges with an associated increased
extinction risk, as revealed by the overall correlation of range size
to temperature we observed.

Hence, we hypothesize that not only tropical lizards, but also
some lacertids from mesic and temperate zones might be “toast”
in the face of climate change59, although they are able to cope
with substantial annual and diurnal variation in temperature and
humidity, and may not operate near their critical thermal safety
margins just yet. We recommend a conservation and research
focus on two groups of lacertids: (i) those occurring in the tropics,
and (ii) montane microendemics whose extirpation risk may be
particularly strong through the combined effects of rising tem-
perature, rising aridity, and increased competition by other spe-
cies better adapted to the novel thermal and hydric conditions.
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Methods
Phylogenomics. We assembled two main datasets (AHE and RNAseq) to resolve
lacertid phylogeny and combined these with five gene fragments commonly used in
lacertid phylogenetics. The amphisbaenian Blanus, a representative of the sister
group of lacertids60 was used as outgroup. AHE sequencing followed established
methods for squamates30,61. For RNAseq, RNA was trizol-extracted from pooled
samples of different organs (skin, muscle, and liver of single individuals per spe-
cies). Libraries were prepared following the Illumina TruSeq mRNA protocol, and
sequenced on an Illumina NextSeq platform. After read pre-processing, tran-
scriptomes were assembled de novo with Trinity v. 2.1.0 (ref. 62). Ortholog
sequences were selected, translated to amino acids and aligned to a previously
compiled set of markers across vertebrates29 using the software Forty-Two (https://
bitbucket.org/dbaurain/42/). Sequences from non-vertebrate sources, cross-con-
taminations, misaligned and possibly paralogous sequences were removed29

(Supplementary Methods) and nucleotide sequences for the retained amino acid
alignments recovered from the original assemblies. A third dataset was compiled
with sequences from previous studies for the nuclear proto-oncogene mos gene (c-
mos) and the mitochondrial genes for 12S and 16S rRNA, Cytochrome b, and
NADH-dehydrogenase subunit 4. For those species included in the phylogenomic
dataset we assembled full mitochondrial genomes, and extracted the four mito-
chondrial target genes.

Phylogenetic analyses. Maximum likelihood trees were inferred separately for the
AHE and RNAseq datasets using IQTREE v. 1.5.4 (ref. 63). Best-fitting partitioning
schemes and substitution models were selected based on the Akaike Information
Criterion (AIC) using the heuristic algorithms implemented in IQTREE and
branch support was assessed by 1000 replicates of ultrafast bootstrapping. For
computational feasibility, the combined dataset was analyzed using the best-fit
partitions previously selected for the three datasets and best-fit models were
selected among JC, HKY, or GTR models, with or without gamma parameter, and
assuming edge-proportional partitions (“-spp” option). For the combined dataset
containing AHE, RNAseq and the five additional gene fragments, the ML tree was
estimated as above except for the constraint to satisfy the topologies recovered by
AHE and RNAseq ML trees. For the AHE and RNAseq datasets, we estimated
summary coalescent species trees under the multi-species coalescent with ASTRAL
II64 with node support measured by multilocus bootstrapping with gene and site
resampling64. Single-locus trees were first estimated under the best-fitting model
and 1000 replicates of ultrafast bootstrapping.

Gene jackknife analyses31 were performed to more stringently test tree
topologies and understand the amount of data required to recover each bipartition
with confidence (>75 GJP). We generated 100 alignment replicates by randomly
sampling loci, without replacement, to ca. 10K, 100K, 1000K, and 10,000K
nucleotide positions (RNAseq), or 5K, 10K, 50K, 100K, and 500K nucleotide
positions (AHE). Each replicate was analyzed by locus-wise partitioned ML and
gene jackknife proportions were estimated as the number of times a given
bipartition is recovered per replicate length.

Phylogenetic placement of fossils and molecular dating. To generate a lacertid
timetree based on phylogenetically tested fossil calibrations, we compiled a mor-
phological dataset of 89 characters, based on published data14,19 and novel
microCT scans for 250 specimens of 82 lacertid species of 36 genera. Added to this
were data from nine fossil taxa selected according to fossil completeness and
stratigraphic reliability (see Supplementary Methods). We pruned our molecular
tree for those taxa represented by morphological data and used it as topological
constraint in a maximum parsimony analysis of the morphological data in TNT
1.5.3 (ref. 65), using 100 replicates of traditional and “new technology” tree sear-
ches. After excluding two fossils that could not be reliably placed due to their low
number of scored characters, we obtained 70 (traditional) and 11 (new technology)
equally parsimonious trees (tree length: 1166 steps; Consistency Index: 0.105;
Retention Index: 0.484). The consensus topology obtained was used to define the
following fossil calibration points (detailed rationale in Supplementary Methods):
(i) Lacertidae, 40.4 Ma minimum age (oldest record of Plesiolacerta lydekkeri),
150.0 Ma maximum age. (ii) Lacertinae, minimum 33.9 Ma (placement of Succi-
nilacerta specimens within Eremiadini), maximum 61.6Ma (oldest-known,
Paleocene lacertid fossils). (iii) Gallotiinae: minimum 28.1 Ma (placement of the
fossil clade containing Dracaenosaurus, Pseudeumeces, and Janosikia sister to
Gallotia), maximum 61.6 Ma; (iv) Lacerta s. str.: minimum 4.4. Ma (oldest reliable
fossil of the Lacerta agilis lineage), maximum 61.6Ma; (v) Acanthodactylus ery-
thrurus – A. lineomaculatus18: minimum 0.8Ma (oldest record of A. erythrurus),
maximum 61.6 Ma. These calibrations were implemented in a penalized likelihood
timetree inference, using TreePL 1.0 (ref. 66) on the full ML phylogram derived
from the combined molecular dataset. As any timetree, our hypothesis contains
multiple uncertainties but this will not affect many of the downstream analyses
(e.g., phylogenetic regressions) because these are independent from the absolute
timescale in the tree.

Ecophysiology and bioclimate. All sampling and experimental work was per-
formed with the appropriate permits: in Croatia, by the Ministry of Environment
and Energy (UP/I-612-07/16-48/11, 517-07-1-1-116-3 from 10 February 2016); in

France (by DREAL Aquitaine 41-2016, DREAL Languedoc Roussillon #2013-274-
0002, DREAL Midi-Pyrénées #81-2013-05, DREAL Auvergne #2013/DREAL/259,
Prefecture de l’Ariege O.B./01/244); in Germany, of the Landkreis Helmstedt; in
Greece (permits ΑΔΑ: 73ΟΣ4653Π8-7ΨΒ and ΑΔΑ: ΩΛΔΠ465ΦΘΗ-Υ5Ε); in
Italy, by Regione Sicilia (DPR 357/97); in Morocco, by the High Commissariat for
Water and Forest (05/2013 HCEFLCD/DLCDPN/DPRN/CFF and 14/HCEFLCD/
DLCDPN/DPRN/CTT); in Namibia, by the Ministry of Environment and Tourism
(MET) (permits 1710/2012, 1890/2014, export permits 92349 and 98784); in
Portugal, by the ICNF (68I2011ICAPT, 171-180/2012/CAPT, 2704/2013/DRNCN/
DGEFF, 2289/2013/DRNCN/DGEFF, 19452/2014/DRNCN/DGEFF,
459I2015ICAPT, 27445/2016/DRNCN/DGEFF) and Parque Natural da Serra da
Estrela (00/PNSE); in Serbia, by Ministry of Energy, Development and Environ-
mental Protection, permit No. 353-01-312/2014-08; in Slovenia, by the Slovenian
Environment Agency (permits no. 35601–32/2010–6, 35601–47/2011–6, 35601-14/
2013-5, and 35601–47/201-6); in Spain, by Diputación General de Aragón (FHF /
E-33 issued 23 June 2000), Principado de Asturias, (2000-11834/2000), Comunidad
Autónoma de Madrid (10/091126.0/00, 10/069021.9/15, 10/040449.9/13 and 10/
091949.9/14), by Xunta de Galicia (#261 issued 11 August 2000, #2791 issued 07
March 2001, EB-041/2017 and 012/2011), by Junta de Castilla-La Mancha (OAEN/
SVSlA/avp_10_174_aut, OAEN/SVSlA/avp_10_169_aut, DGAPYB/SB/
avp_11_014, DGMEN/SEN/avp_12_163_aut), by Junta de Castilla-León (EP/
CYU122/2011, EP/CYL/228/2012, EP163/2000, EP 53/2001, EP 157/2000), by
Generalitat de Catalunya (SF/153, SF/154, SF/698), by the region of Murcia (AUT/
CAP/UND/44/10, AUTICA PI UND/24/2011, AUT/FA/UND/30/2012), by the
Illes Balears region (CAP 55/2011), by the Junta de Andalucia (SGYB/FOA/AFR/
2010, SGYB/FOA/AFR/2011), by Cabildo de Tenerife (AFF 160/18), and by Parque
Nacional de Ordesa y Monte Perdido (#402 issued 03 May 2000); and in Turkey, by
the Ministry of Forestry and Water Affairs, Directorate of Nature Conservation
and National Parks (permit number: 2014-51946). Ethics approval was granted by
Landesamt für Verbraucherschutz und Lebensmittelsicherheit in Lower Saxony,
Germany (Az. 33.19-42502-04-15/1900), ethics committee of the Institute for
Biological Research “Siniša Stanković” (05-05/14) in Serbia, and Ege University
Animal Experiments Ethics Committee, Turkey (approval number: 2014- 002);
accreditation in animal experimentation was issued to M.A. Carretero by Gen-
eralitat de Catalunya (Spain).

Evaporative water loss was measured housing lizards individually in plastic
boxes and placing these into a large container provided with silica gel to maintain
low air humidity at 10–20%, in the dark and at a constant temperature of
20–22 °C67. Lizards were weighed once every hour during 6–12 h, and
instantaneous evaporative water loss (IWL) calculated as the amount of hourly
weight loss, averaged over all measurements per individual, corrected by regression
against the lizard’s body surface area, estimated as ln[surface area]= 2.36+
(0.69 × ln[mass])68. Preferred body temperatures (Tpref) were estimated as those
selected by individuals on a photothermic gradient 20–55 °C25 created with an
incandescent 100W light bulb. After a short period of acclimation when body
temperature rises above room temperature (15 min), lizard body temperature was
measured every minute over a period of up to 150 min by thermocouples (details in
Supplementary Methods) and Tpref was calculated as average over all included
measurements. Ecophysiological measurements were obtained for an average of
13 (Tpref) and 12 (IWL) male individuals per species (detailed sample sizes per
species in Supplementary Table 13), often from multiple locations, and median
values per species were used for downstream analyses.

We compiled a curated dataset of georeferenced data points for lacertid lizards
by combining (i) data from the Global Biodiversity Information Facility (www.gbif.
org), (ii) our own published and unpublished datasets, and (iii) literature data. To
obtain an approximation of bioclimatic conditions characterizing the overall range
of species, we extracted 29 bioclimatic variables (http://www.worldclim.org) at
30 arc seconds of spatial resolution33. We calculated yearly hours above 30 °C at
1 cm above the ground, rock surface, and at full sun exposure from the Microclim
dataset35 at a spatial resolution of ~18 × 18 km, as well as yearly hours >4 °C and
with solar radiation of >100W/m2. This computation is conceptually similar to the
one used to predict the observed extinctions of lizards at global scales16, differing
slightly in y and x-variable scales.

To analyze the disparity between Tpref and the temperatures a species
experiences within its range we extracted from Worldclim the monthly maximal
and minimal temperatures (Tmax, Tmin), as an average value for each occurrence
record for the years 1950–2000. We then excluded months with Tmin <5 °C,
averaged Tmax across remaining months for each occurrence record, and subtracted
this value from the Tpref of the respective species.

Comparative and diversification analyses. Bioclimatic and physiological vari-
ables were mapped onto the lacertid timetree (pruned for species with missing data
for each variable), estimating states in internal nodes by ML, assuming a Brownian
model of evolution and interpolating them along branches (function contMap in
the R package phytools69). We explored the relationship between IWL, Tpref and
bioclimate by means of phylogenetic linear and second order polynomial regression
models (PRM) with the R package phyloml70 selecting a fixed-root Ornstein-
Uhlenbeck (OU) model based on AIC scores. Three values (body size, distribution
range, and hours >4 °C and >100W/m2) were log-transformed before analysis. We
used Blomberg’s K statistic71 to estimate phylogenetic signal. This was done with
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the function phylosig in phytools69, estimating P-values by 1000 simulations. To
visualize trends of Tpref and hours >30 °C over time, we estimated these variables
for each branch as the average between the two contacting nodes, and averaged the
values for all lineages (branches) existing at a certain time.

To explore the dynamics of species diversification we fitted 15 alternative
models of species diversification to the lacertid phylogeny using the R package
RPANDA39. Of these models six assumed covariation between speciation rates and
time, six others assumed covariation between speciation rates and
paleotemperature across the Cenozoic and three models assumed constant
speciation rates. Across models, extinction was set to zero, either constant or
linearly covarying with time or temperature. We subsequently ranked models
according to their AIC values. We also independently explored dynamics of
diversification using the program BAMM40 using two independent runs
(Supplementary Methods). Temporal dynamics of bioclimatic diversification were
visualized by plotting the climatic disparity through-time72, as well as by
calculating the absolute values of standardized independent contrasts of
climate values across the phylogeny and regressing it against the associated
node ages73.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
RNA-Seq data are available from the Sequence Read Archive (SRA Bioproject
PRJNA543749), DNA sequences from GenBank (MN015052–MN015359,
MN030176–MN030252), and phylogenetic datasets, microCT scans, and physiological
experiment raw data in Figshare (DOIs: https://doi.org/10.6084/m9.figshare.8150690.v1/
https://doi.org/10.6084/m9.figshare.8866271.v1/https://doi.org/10.6084/m9.
figshare.8863520.v1). The source data underlying Fig. 2b–e and Supplementary Fig. 17a,
b and Supplementary Fig. 13 are provided as a Source Data file.
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