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ABSTRACT.—The interspecific relationships among female size, clutch size, egg size, and hatchling size
were examined for 64 European lacertids. The eggs of all species increased linearly in both linear dimensions
and mass during incubation. Across species initial egg mass was positively correlated with juvenile mass,
with an allometric relationship exponent of 0.87. Initial egg mass across species increased proportionally
with female mass to the power of 0.57. Moreover, an increase in maternal mass was also accompanied by
an increase in clutch size. The number of eggs per clutch across species scaled with female mass to the
power of 0.39. Removing the effect of female mass resulted in a negative correlation between egg mass and
clutch size. Species for which the average egg size was lower than expected on the basis of female mass,
tended to have larger relative clutch size. The total egg mass per clutch was about one third of female mass

(exponent 0.94).

Although numbers of offspring per clutch are
constant in geckos (Kluge, 1987; Werner, 1989),
anoline lizards (Smith et al,, 1973), and other
groups of lizards (Shine and Greer, 1991), clutch
size is more variable in European lacertids. Giv-
en that there is a finite quantity of energy avail-
able for a reproductive attempt, energy must be
apportioned as few, large or as many, small off-
spring. The degree to which offspring number
is compromised in favor of offspring size differs
among species and for different populations of
the same species living in different demograph-
ic environments. Furthermore, the annual quan-
tity of energy available may be apportioned
among a varying number of clutches.

The European lacertids form a group of close-
ly related species occupying a large variety of
habitats. Such a group is well-suited for the
study of variation in a number of reproductive
traits. Although reproductive traits of some spe-
cies of lacertids have been studied (Castilla and
Bauwens, 1989; Castilla et al., 1989; Van Damme
et al., 1992) information on the number and size
of eggs and juveniles is limited for most Euro-
pean lacertid lizards (Bohme, 1981, 1984, 1986).
In this study we examined the relationships
among female size, clutch size, egg size, and
hatchling size for a variety of European lacer-
tids. In reptiles in general, the relationship be-
tween egg mass and maternal body mass has
an exponent of 0.57 (Blueweiss et al., 1978), sug-
gesting a decrease of relative egg mass with
body mass. If the same relative quantity of en-
ergy was available for all lacertids one may also
expect an increase in clutch size with body
mass. A trade-off between egg size and egg
number present in single species (Van Damme
et al, 1992) may also be present in the group of

European lacertids. The study of life histories in
a group of closely related species can lend in-
sights into the life history evolution of individ-
ual species of these lizards.

MATERIALS AND METHODS

We collected data on reproductive character-
istics of 64 West Palearctic lacertids between
1988-1992. All species were collected from the
wild and kept in vivaria as part of a study in-
vestigating the courtship behaviour of these liz-
ards by the first author. All species were kept in
indoor terraria under a diel light regime ap-
proximating 42° latitude. Food (crickets, mag-
gots, flies, mealworms), was supplemented by
vitamins and minerals, and water were available
ad libitum. Under the incandescent spots (25-40
W) substrate temperatures of maximally 45 C
were reached. Ambient temperatures varied be-
tween 18-25 C. Most animals were hibernated
for 3-5 mo (duration depending on the species)
at temperatures of 3-5 C. The animals were nor-
mally kept in pairs, although sometimes two or
three females were present in a terrarium.

Plastic boxes (11 X 11 X 6 and 13 X 17 X 6
cm) filled with moist potting soil provided a
medium for oviposition and each box was
checked daily. Several hours after oviposition,
the eggs were removed from the plastic boxes,
individually marked, and transferred to incu-
bators maintained at a constant temperature of
25 * 02 Cor 29 * 0.2 C and high humidity.
Eggs were randomly distributed within the in-
cubators. For the analyses of all egg and incu-
bation variables only data for the 25 C regime
were used. For hatchling mass, data were some-
times pooled within species after testing for dif-
ferences in average mass (t-test). The water po-
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FiG. 1. (A) Relationship between initial egg mass (X) and hatchling mass (Y) for 57 species (Y = 0.97 X°%),

(B) Relation between initial egg mass (X) and hatchling mass (Y) for 47 eggs of Podarcis milensis (Y = 1.00 X°7%),

tential of the incubating medium was not re-
corded, although later measurements suggest a
value between —100/—400 kPa. Eggs were reg-
ularly moistened with water using a plant spray
bottle. Embryo mortality was low (10-15%) and
eggs that failed to develop were excluded from
the analyses. Mass was measured to the nearest
0.01 g using a Mettler balance. Temperatures
were measured with a digital thermometer
(0.1 C) on the incubation substrate (synthetic
aquarium filter material, Perlon). Egg width and
length were measured to the nearest 0.1 mm
using a digital calliper. Egg size measurements
were obtained prior to the transfer to the incu-
bator and subsequently at weekly intervals. Fi-
nal linear egg measurements and mass were
measured 1-2 d before hatching, when egg
mass started to decrease and small droplets ap-
peared on the surface of the egg.

Female mass was measured at the end of the
summer, when females were not gravid. To
characterize reproductive traits for each species,
data were averaged over all females, clutches,
and hatchlings within a species. Missing values
sometimes precluded analysis of the full set of
64 species. For the analysis of egg or hatchling
mass in relation to clutch size, average egg or
hatchling mass per clutch was used.

RESULTS

Length, width, and mass of the eggs at ovi-
position and just prior to hatching, and snout-
vent length, tail length, and juvenile mass are
presented in Table 1. Egg size at oviposition var-
ied from an average of 9.7 X 5.7 mm (0.18 g) in
Algyroides fitzingeri to 19.8 X 14.5 mm (2.38 g)
in Lacerta lepida. The eggs of all species increased
in both size and mass during incubation. Before
hatching, egg size increased to an average of
149 X 89 mm (0.75 g) in A. fitzingeri and to
28.5 X 19.5 mm (6.42 g) in L. lepida. In most of
the lizards the relationship between egg mass
and time was positive and linear. The rate of

increase of egg mass differed within and among
species but this depended largely on initial egg
mass.

Incubation duration at 25 C varied from 28 d
for Lacerta mosorensis to 90 d for Lacerta cappa-
docica schmidtlerorum. The incubation period
among species was positively correlated with fe-
male mass (r = 0.37; N = 53; P < 0.01) but this
seemed to be due to the four largest species in
the sample (>35 g). For the remaining species
the correlation was not significant (r = 0.07; P
> 0.05; N = 49). Initial egg mass and incubation
duration were positively correlated (r = 0.50; P
< 0.01; N = 58). Because data on Lacerta part I
species (sensu Arnold, 1973) were limited we
included observations from Bischoff (1981) on
Lacerta jayakari. Without the large L. lepida and
Lacerta jayakari the correlation between initial
egg mass and incubation duration fell to r =
0.11 (P > 0.05; N = 56). Among species there
was no correlation between the rate of increase
of egg mass and the duration of incubation (r =
0.13; P > 0.05; N = 58).

For 57 species the average mass of the hatch-
ling was 1.09 times larger than the average ini-
tial egg mass (Fig. 1A). Uptake of water through
the porous flexible egg shell may explain the
fact that hatchling wet mass is higher than ini-
tial egg mass (e.g., Kramer, 1938; In den Bosch,
1991). Egg mass and hatchling mass were cor-
related among species (r = 0.97). The exponent
found for this relationship (hatchling mass =
0.97 X initial egg mass®¥) is close to 1 and in-
dicates that eggs of all sizes produce hatchlings
with a mass proportional to egg mass. To test
for this relationship within a single species, we
assessed data for P milensis for which a large
number of measurements were available. Initial
egg mass and hatchling mass was positively
correlated (r = 0.58; N = 47; P < 0.001; Fig. 1B)
and the exponent for this relationship (hatchling
mass = 1.00 X initial egg mass®’*) was similar
to that found for the relationship across species.
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FIG. 2. Relationship between log average female mass (X) and log initial egg mass (Y) for 57 species (Y =

0.15 X0%),

Female body mass was positively correlated
with egg mass (r = 0.90; P < 0.01) and clutch
size (r = 0.73; P < 0.01), which resulted in a
positive correlation between clutch size and egg
mass (r = 0.51; P < 0.01). Initial egg mass in-
creased exponentially with female mass across
species (exponent 0.57; Fig. 2). Clutch size
scaled with female mass to the power of 0.39
(Fig. 3). The effect of female mass on the repro-
ductive variables was removed by analyzing the
differences between expected and measured
values (allometric residuals) of both variables.
The residuals of egg mass and clutch size were
significantly and negatively correlated (Fig. 4; r
= -052, N = 57, P < 0.01). Similarly, when
female mass was held constant by partial cor-
relation, clutch size and egg mass were nega-
tively correlated (r = —0.47, N = 56, P < 0.001).
Because egg mass and hatchling mass were pos-
itively correlated, a similar result was found for
the relationship between clutch size and hatch-
ling mass (r = —0.51, N = 56, P = 0.001). There-
fore, species for which the average clutch size

1.35 1

1.054

log average clutch size

was large relative to female body mass, also
tended to have small relative hatchling size.

A similar negative correlation was found
within species. Females of three species (A. fit-
zingeri, A. moreoticus, P. milensis) produced a suf-
ficient number of clutches to analyze the rela-
tionships between egg size, clutch size, and
hatchling size. Because the range of clutch sizes
was small in most species and data were not
bivariate normally distributed, Kendall’s rank
correlation was used (Table 2). In all three spe-
cies clutch size was negatively correlated with
both initial egg mass and hatchling mass. These
data indicate that within species, large clutch
size was associated with relatively small off-
spring size.

Total egg mass per clutch (TEC = average egg
mass X average clutch size) was highly depen-
dent on female mass (W) among species (Fig. 5;
TEC = 0.29 W°%). The number of clutches per
year per female did not correlate with species
mass, egg mass, or clutch size.

.25 75

1.25 1.75 2.25

log average female mass (g)

FIG. 3. Relationship between log average female mass (X) and log average clutch size (Y) for 57 species (Y

= 1.84 X¥),
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FIG. 4. Scatterplot of the difference between expected and measured egg mass and the difference between
expected and measured clutch size (r = —0.448; N = 57).

DiscussION

We found that initial egg mass increased with
body mass across our lacertid species. From our
data it is clear that large species have relatively
small eggs. The slope for the log transformed
data (0.57) was much lower than in birds (Rahn
et al,, 1975) but somewhat higher than reported
for reptiles in general (Blueweiss et al, 1978).
Clutch size also increased with body mass. Both
the analysis of allometric residuals and partial
correlation analysis showed that, after removing
the effect of body mass, there was a clear neg-
ative relationship between clutch size and egg
mass. Across species the relationship between
body mass and egg mass was stronger than the
relationship between egg size and clutch size.
As a result, both egg mass and hatchling mass
increased with body mass.

The relationships between egg size, clutch
size, hatchling size, and maternal body size
within individual lacertid species are largely
unknown. However, the basic relationship
among these variables seem similar at species

level. Within the three individual species inves-
tigated in our study, average egg mass de-
creased with increases in clutch size. A negative
relationship was also found in Podarcis muralis
(Van Damme et al.,, 1992) and in L. lepida (Cas-
tilla and Bauwens, 1989). This negative correla-
tion between egg size and number is in agree-
ment with a trade-off between egg numbers and
egg size. Note however, that for the individual
species our data are not corrected for female
mass. In P muralis (Barbault and Mou, 1988), L.
lepida (Castilla and Bauwens, 1989), and Lacerta
vivipara (Bauwens and Verheyen, 1987), clutch
size increased with female snout-vent length
(SVL). In snakes, a partial correlation analysis
was used to eliminate the effect of female size
from the relationship clutch size versus egg size
(Ford and Seigel, 1989). Part of the decrease in
average egg mass may therefore be the result of
an increase in female size rather than clutch size
per se. Our data on individual species were too
limited and the range of body sizes too small
to eliminate the effect of female mass, as was

TABLE 2. Relationships of clutch size and average egg mass, and average hatchling mass per clutch (g). Last
column Kendall’s rank correlation between the three variables and P-values.

Correlation between

Clutch Average Average
size egg hatchling CS/EM CS/HM EM/HM
Species (CS) N mass (EM) mass (HM) P P P
A. fitzingeri 1 5 0.22 = 0.04 0.25 £ 0.02 -0.329 —0.630 +0.433
2 16 0.18 = 0.02 0.20 = 0.01 =0.05 <0.001 <0.01

3 3 0.18 = 0.01 0.20 = 0.01
A. moreoticus 1-2 5 0.26 = 0.03 0.26 = 0.01 -0.718 —0.680 +0.716
3 8 0.21 = 0.02 0.24 = 0.03 <0.001 <0.001 <0.001

4-5 4 0.18 = 0.01 0.19 = 0.01

46 12 0.32 = 0.04 0.39 = 0.07
P. milensis 2 14 0.53 = 0.01 0.58 = 0.09 —0.669 —0.444 +0.491
3 15 0.42 = 0.06 0.52 = 0.08 <0.001 <0.01 =0.001

4 4 0.38 = 0.01 0.46 = 0.04
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FiG. 5. Total egg mass per clutch (TEC: average initial egg mass multiplied by average clutch size) as a
function of female mass (W) for 57 species (TEC = 0.29 W),

done with the partial correlation for all species
combined. The individual species for which a
sufficient range was available are summarized
in Table 3. These data suggest that average egg
mass and average clutch size remain more or
less constant as females increase in size, but the
number of clutches per year appeared to in-
crease with female mass.

Phenotypic plasticity in clutch size of lizards
has been found to be a response to proximate
environmental conditions (James and Whitford,
1994). Temperature, hydric conditions, and ma-
ternal nutrition have been shown to influence
incubation period, final egg mass, and hatchling
size. Maternal nutrition may vary during the
season and can affect egg size, egg number, and
hatchling size (Ferguson and Bohlen, 1978;
Nussbaum, 1981; Seigel and Ford, 1991). Eggs
laid late in the season by Sceloporus undulatus

and Uta stansburiana are larger and produce
larger hatchlings than do eggs laid earlier in the
season. Such differences are not present in our
data which may be a result of ad libitum avail-
ability of food and water throughout the year.
European lacertids are not, of course, an eco-
logically homogeneous group and several con-
straints may influence clutch mass and egg
mass. It is generally assumed (Vitt and Cong-
don, 1978; Brodie, 1989) that females of widely
foraging species have smaller relative clutch
masses than do sit-and-wait females (Huey and
Pianka, 1981) thus probably reducing predation
risk. As the data of Perry et al. (1990) indicate,
there could very well be a continuum of forag-
ing modes in lacertid lizards which could com-
plicate generalizations on reproductive traits in
the European species. Moreover, Dunham et al.
(1988) found a relationship between clutch size

TABLE 3. Relationships between individual female mass, average egg mass/ clutch, average number of eggs/
clutch, total number of clutches/year and total egg mass/year within a species.

Female Average egg Average Number of Total egg
Species mass (g) mass/ clutch eggs/ clutch clutches mass/ year
A. moreoticus 2.16 0.13 = 0.01 35+21 2 0.91
2.39 0.19 = 0.03 33+ 06 3 1.71
253 0.19 = 0.05 32+08 5 3.04
3.19 0.22 = 0.05 35+ 10 4 3.08
L. derjugini 3.78 0.25 = 0.03 47 =12 3 3.52
4.16 0.26 = 0.01 3.0 £1.0 3 2.34
4.44 0.22 = 0.02 43 £ 0.6 3 2.84
L. laevis 5.45 0.35 = 0.01 46 =12 3 4.83
6.12 0.37 = 0.02 53*15 3 5.88
6.89 0.34 = 0.03 55+ 19 4 7.39
L. parva 3.32 0.44 = 0.07 50 %00 1 2.21
3.78 0.36 = 0.02 40=x10 3 4.27
4.47 0.34 = 0.02 5507 2 3.77
4.53 0.36 = 0.08 5014 2 3.65
5.48 0.33 = 0.01 52 %06 3 5.19
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and habitat: arboreal and arenicolous lizards
produced smaller clutches than terrestrial and
saxicolous species.

The question remains to what extent trade-
offs found for the group as a whole may be ap-
plied to individual species or populations. More
data on individual species will have to be col-
lected to test the relations described for the
group. Furthermore, field data on individual off-
spring survival probability and the number of
total surviving offspring are needed to give in-
sight into the assumptions underlying optimal
offspring size models.
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