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Spontaneous magnetic alignment behaviour in free-living lizards
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Abstract Several species of vertebrates exhibit spontaneous
longitudinal body axis alignment relative to the Earth’s mag-
netic field (i.e., magnetic alignment) while they are performing
different behavioural tasks. Since magnetoreception is still not
fully understood, studying magnetic alignment provides evi-
dence for magnetoreception and broadens current knowledge
ofmagnetic sense in animals. Furthermore, magnetic alignment
widens the roles of magnetic sensitivity in animals and may
contribute to shed new light on magnetoreception. In this con-
text, spontaneous alignment in two species of lacertid lizards
(Podarcis muralis andPodarcis lilfordi) during basking periods
was monitored. Alignments in 255 P. muralis and 456
P. lilfordi were measured over a 5-year period. The possible
influence of the sun’s position (i.e., altitude and azimuth) and
geomagnetic field values corresponding to the moment in
which a particular lizard was observed on lizards’ body axis
orientation was evaluated. Both species exhibited a highly sig-
nificant bimodal orientation along the north-northeast and
south-southwest magnetic axis. The evidence from this study
suggests that free-living lacertid lizards exhibit magnetic align-
ment behaviour, since their body alignments cannot be ex-
plained by an effect of the sun’s position. On the contrary, lizard
orientations were significantly correlated with geomagnetic

field values at the time of each observation. We suggest that
this behaviour might provide lizards with a constant directional
reference while they are sun basking. This directional reference
might improve their mental map of space to accomplish effi-
cient escape behaviour. This study is the first to provide spon-
taneous magnetic alignment behaviour in free-living reptiles.
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Introduction

As ectothermic animals, reptiles obtain heat from environ-
mental sources being able to control their body temperatures
within relatively narrow limits by behavioural means, even
though ambient temperatures vary (Huey 1982; Stevenson
1985; Bauwens et al. 1996; Castilla et al. 1999).
Behavioural thermoregulation involves microhabitat selection
(Díaz 1991; Bauwens et al. 1996), adjustments in time of
activity (Huey and Pianka 1977; Hertz 1992; Adolph and
Porter 1993) and adoption of postures which can alter the rates
of heating and cooling (Bauwens et al. 1990; Rocha and
Bergallo 1990;Martín et al. 1995). Among behavioural mech-
anisms, adjustment of activity periods has been suggested to
be the most critical in determining body temperature, whereas
microhabitat selection seems to be more important than pos-
tural adjustments for controlling body temperature (Shine and
Kearney 2001).

Basking in the sun is typically associated with behavioural
thermoregulation in the wall lizard, Podarcis muralis (Braña
1991), as well as in the Balearic lizard, Podarcis lilfordi
(Ortega et al. 2014). Most of active lacertid lizards adopt a
basking posture in the sunshine during the early morning,
while the occurrence of lizards basking reaches a minimum
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during noon and increases again during late afternoon (Pérez-
Mellado 1983; Braña 1991; Bauwens et al. 1996; Ortega et al.
2014). Otherwise, since posture and body axis orientation
have an influence on heating rates and body temperatures in
many species of lizards (Heath 1965; Barlett and Gates 1967;
Waldschmidt 1980; Rocha and Bergallo 1990; Bauwens et al.
1996; Díaz et al. 1996), they should be expected to expose as
extensive as possible an area of the body to the sun when
basking. Therefore, a lizard’s position should be perpendicular
to the sun to maximize its exposed body surface area to gain
heat, particularly in the early morning and the late afternoon
but at midday as well (Muth 1977; Grant and Dunham 1988;
Martín et al. 1995; Shine and Kearney 2001). For instance,
lizards should be oriented east-west to maximize exposure to
the midday sun’s rays (Shine and Kearney 2001).
Consequently, we should expect that directional body orien-
tation (i.e., body alignment) of basking lizards is not random,
although a few studies have shown that lizards’ body align-
ment with respect to the sun does not significantly contribute
to changes in body temperature (Muth 1977; Waldschmidt
1980; Martín et al. 1995; Bohórquez-Alonso et al. 2011).

Directional movements of reptiles, which are critical for
locating food and mates and avoiding environmental extremes
and predators (Vitt and Caldwell 2009), have been intensively
studied (Ellis-Quinn and Simon 1991; Plotkin 2002; Russell
et al. 2005; Vitt and Caldwell 2009; Southwood and Avens
2010). Reptiles integrate different sources of information to
steer movements in space, including olfactory cues (Dundee
andMiller III 1968; Chelazzi and Delfino 1986; Graham et al.
1996), celestial cues (Newcomer et al. 1974; Murphy 1981;
Lawson and Secoy 1991; Freake 1999, 2001), visual land-
marks (Graham et al. 1996) and the Earth’s magnetic field,
that has been extensively studied in turtles (Mathis and Moore
1988; Lohmann 1991; Lohmann and Lohmann 1993;
Lohmann et al. 2004) and crocodiles (Rodda 1984a, b,
1985). Evidence of magnetic field sensitivity has been also
found in the Philippine bent-toed gecko Cyrtodactylus
philippinicus (Marek et al. 2010), and the diurnal agamid liz-
ard Pogona vitticeps (Nishimura et al. 2010) has been proved
to be sensitive to extremely low-frequency electromagnetic
fields. Furthermore, P. vitticeps shows a light-dependent
magnetoreceptive response involving the parietal eye
(Nishimura et al. 2010).

It is noteworthy that amphibians (Meyer-Rochow 2014a)
and reptiles (Meyer-Rochow 2014b) can use the e-vector di-
rection of the polarized light to orient. Considerable evidence
suggests that the sky polarization compass sense of amphib-
ians and reptiles is mediated by an extraocular photoreceptor.
The pineal complex itself is involved in amphibians (Taylor
and Adler 1978; Taylor and Auburn 1978), while the parietal
eye seems to be implicated in reptiles (Adler and Phillips
1985; Ellis-Quinn and Simon 1991; Freake 1999). Since the
available evidence suggest parallels between light-dependent

magnetoreception and polarized light detection in vertebrates
(Phillips et al. 2001), similar photoreception mechanisms may
mediate the light-dependent magnetic and polarized light
compasses (Phillips et al. 2001).

Nonetheless, the study of body alignment of reptiles in
diverse behavioural contexts has received little attention apart
from a few studies about the orientation of the lizards’ longi-
tudinal body axis with respect to the sun (Martín et al. 1995;
Bohórquez-Alonso et al. 2011), and no research has been done
so far to study spontaneous magnetic alignment in free-living
reptiles.

Magnetic compass orientation has been demonstrated ad-
vantageous in a wide variety of animals (Walker et al. 2002;
Wiltschko and Wiltschko 2002, 2006). However, magnetic
alignment, a non-goal-directed orientation of the body relative
to the geomagnetic field (Begall et al. 2013), is a fixed direc-
tional response of unknown biological function and adaptive
significance (Begall et al. 2013). Nevertheless, it has been
suggested that magnetic alignment might play a role in in-
creasing the accuracy of spatial orientation and/or enhancing
selective attention to other sensory modalities (Phillips et al.
2010b, 2013; Červený et al. 2011; Begall et al. 2013; Landler
et al. 2015).

An array of studies has shown magnetic alignment in in-
sects (Roonwal 1958; Deoras 1960; Becker 1964; Becker and
Speck 1964; Altmann 1981; Vácha et al. 2010; Painter et al.
2013) and in several species of vertebrates, including fish
(Tesch and Lelek 1973; Becker 1974; Chew and Brown
1989; Hart et al. 2012), amphibians (Phillips et al. 2002;
Schlegel 2007; Schlegel and Renner 2007), reptiles (Landler
et al. 2015), birds (Hart et al. 2013a) and mammals (Begall
et al. 2008, 2011; Burda et al. 2009; Červený et al. 2011; Hart
et al. 2013b; Slaby et al. 2013). These studies offer compelling
evidence for further roles of the magnetic sense apart from
goal-directed orientation.

The aim of this study is to determine whether lizards ex-
hibit spontaneous magnetic alignment behaviour when
basking. Therefore, we recorded spontaneous alignment in
two species of lacertid lizards (Podarcis muralis and
Podarcis lilfordi) during basking periods, in diverse localities
at different times of the day. We also considered sun azimuth,
sun altitude and the Earth’s magnetic field as possible factors
affecting alignment of lizards.

Materials and methods

Subjects and study sites

Podarcis muralis (adult snout-to-vent length = 48–69 mm) is
a small lacertid lizard widely distributed in Southern Europe
with the north of the Iberian Peninsula being the southern edge
of its range (Pérez-Mellado 1998a). Observations were
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gathered during 18 days from 2012 to 2014, through the
months of April, July, August and October in Cantabria,
northern Spain. Three study areas were selected, one in the
Cieza Mountains (43° 13′ 46″ N, 4° 09′ 38″ W; elevation
308 m), one in the Valnera Mountains (43° 10′ 44″ N, 3° 40′
36″ W; elevation 1185 m) and one in the Buelna Valley (43°
17′ 39″ N, 4° 04′ 31″ W; elevation 56 m).

Podarcis lilfordi is a medium-sized lacertid lizard endemic
to the Balearic Islands (Spain). There are currently 23 subspe-
cies of P. lilfordi living in the Cabrera Archipelago and coastal
islets of Mallorca and Menorca (Pérez-Mellado 1998b). We
studied P. lilfordi lilfordi from the Aire islet (39° 48′ 01″N, 4°
17′ 26″ E; elevation 2 m), where this species attains a very
high population density (3984 ± 524.1 individuals ha−1)
(Brown and Pérez-Mellado 1994). Aire islet is 1 n.m. apart
from the SE coast ofMenorca; it has a surface of 35 ha, mostly
occupied by shrub halophyte vegetation (Ortega et al. 2014).

P. lilfordi is a melanistic lizard, with males (average snout-
to-vent length 68.98 mm) larger than females (average snout-
to-vent length 61.73 mm). The study was conducted during
11 days between April and August from 2012 to 2016.

Body temperature of lacertids depends on gaining radiative
heat from the sun, either directly (heliothermy) or from a heat-
ed substrate (thigmothermy), although basking (i.e.,
heliothermy) is the most common mechanism for increasing
body temperature in these species (Avery 1976; Braña 1991;
Ortega et al. 2014). Both species are mostly active in the early
morning and in the late afternoon, decreasing their activity
during the hottest midday hours (Pérez-Mellado 1998a, b).

Analysis of body position of lizards

Transect lines were followed in study sites walking slowly
through the area until an adult lizard basking was sighted.
Recording were made by different observers in Cantabria
and Balearic Islands, but all observations in a particular study
site were done by the same person in the absence of wind and
under a clear sky. Given the large size of the studied areas,
repeated measurements of the same individual were avoided
sampling each transect line only once; furthermore, P. muralis
is a territorial species and density of P. lilfordi lizards was high
enough to do repetition of the same individual unlikely.
Observations were classified according to three different times
of day: morning (sun azimuth 90–150°), noon (sun azimuth
151–210°) and afternoon (sun azimuth 211–270°).

Only head direction (angular data) of those lizards basking
with their body perfectly aligned was recorded. However,
since the lizards’ alignments are bidirectional, we also consid-
ered data as axial in our analyses. The compass directions
were estimated to the nearest 5° using a hand-held compass,
and the exact time of the day (GMT) was recorded in each
observation.

Geomagnetic values at the time of the observation
and the lizards’ orientation

Magnetic field values corresponding to the moment in which a
particular lizard was observed were collected from Ebro
Magnetic Observatory—Instituto Geográfico Nacional
(Roquetes, Spain; 40° 49.261′, 0° 29.731′). These magnetic
field values were true north component (X), true east compo-
nent (Y), vertical component (Z) and total intensity (F), as well
as rate of change (nT/min) of X, Y, Z and F.

To evaluate a possible relationship between the lizards’
head direction (i.e., the specific direction in which one lizard’s
head points to when basking), as well as the lizards’ body
alignments (i.e., body axes) while basking, and the geomag-
netic field values at the time of the observation, we performed
a circular-linear correlation analysis.

The sun’s position and the lizards’ orientation

To evaluate a possible influence of the sun position (i.e., alti-
tude and azimuth) on the lizards’ body alignment we per-
formed a circular correlation for these parameters. Sun altitude
and azimuth data for the time of each observation were ob-
tained from the US Naval Observatory (USNO).

Statistical procedures

The distributions of bearings were analysed using standard
circular statistics (Batschelet 1981). Mean vectors were calcu-
lated by vector addition and tested for departure from a ran-
dom distribution using the Rayleigh test. Watson’sU2 test and
Mardia-Watson-Wheeler test were used to determine whether
two ormore than two distributions were identical, respectively
(Batschelet 1981). Statistics for bimodal distributions were
calculated by doubling each data value and reducing any
greater than 360 using modulo arithmetic. Means for axial
data are presented as XX°/XX°.

The circular correlation procedure and parametric
significance test of Jammalamadaka and Sengupta (2001)
were used to test for correlation between the sun’s position
and the axial directions (i.e., body alignments) of the lizards
while basking. The circular-linear correlation coefficient
(Mardia and Jupp 2000) was used to evaluate the correlation
between the lizards’ body alignment and the lizards’ head
direction while basking and the geomagnetic field values at
the time of the observation. These circular-linear correlation
coefficients range from zero to one, so there is no negative
correlation. Correlation procedure and parametric significance
test of Jammalamadaka and Sengupta were calculated with
PAST 2.17 (Hammer et al. 2001). The remaining circular sta-
tistics were calculated with Oriana 2.0 (Kovach Computing).
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Results

Common wall lizard (Podarcis muralis)

There were no differences between males and females in the
specific direction in which a lizard’s head points to when
basking (i.e., angular data) (Watson’s U2 test: U2 = 0.149,
P > 0.1), and both groups were oriented randomly (Rayleigh
test: males: 241°, r = 0.108, P = 0.241, N = 134; females: 25°,
r = 0.111, P = 0.189, N = 121). Therefore, the mean vector of
the pooled data was calculated and again, the analysis of the
head direction while basking did not show a significant devi-
ation from a random distribution (Rayleigh test: 325°,
r = 0.035, P = 0.737, N = 255). Taken the study sites sepa-
rately, lizards also showed a random distribution (Rayleigh
test: Buelna Valley: 339°, r = 0.068, P = 0.423, N = 184;
Valnera Mountains: 87°, r = 0.059, P = 0.875, N = 39; Cieza
Mountains: 211°, r = 0.17, P = 0.398, N = 32). Furthermore,
head direction at different times of day (i.e., morning, noon
and afternoon) also showed a random distribution (Rayleigh
test: morning: 343°, r = 0.088, P = 0.372, N = 129; noon:
275°, r = 0.074, P = 0.676, N = 72; afternoon: 141°,
r = 0.099, P = 0.589, N = 54).

On the contrary, the axial data analyses showed a signifi-
cant deviation from a random distribution in both males
(Rayleigh test: 18°/198°, r = 0.295, P = 8.33 × 10−6,
N = 134) and females (Rayleigh test: 25°/205°, r = 0.284,
P = 5.89 × 10−5, N = 121). As body alignments did not differ
significantly between males and females (Watson’s U2 test:
U2 = 0.045, P > 0.5), pooled data were used in subsequent
analyses. Thus, the body axes of lizards showed a significant
deviation from a random distribution (Rayleigh test: 21°/201°
± 9°, P = 6.83 × 10−10, N = 255; Table 1, Fig. 1a) with a
preference for a north-northeast and south-southwest magnet-
ic axis. Likewise, lizards aligned their body in a north-
northeast and south-southwest axis regardless of the time of
day (Mardia-Watson-Wheeler test: W = 4.31, P = 0.366;
Table 1, Fig. 2). Also, there was no significant difference
(Mardia-Watson-Wheeler test:W = 1.621, P = 0.805) between

the lizards’ body axes at different locations (Rayleigh test:
Buelna Valley: 23°/203°, r = 0.27, P = 1.56 × 10−6,
N = 184; Valnera Mountains: 18°/198°, r = 0.3, P = 0.029,
N = 39; Cieza Mountains: 19°/199°, r = 0.381, P = 0.009,
N = 32).

The lizards’ body orientation was independent from sun
position (Online Resource 1), because no significant correla-
tion between the sun’s azimuth and the lizards’ body axes was
found (circular correlation: R = 0.031, T = 0.499, P = 0.618,
N = 255). No significant correlation was found between the
sun’s altitude and the lizards’ body orientation (circular corre-
lation: R = 0.026, T = 0.4, P = 0.689, N = 255; Online
Resource 1). Thus, the sun can be excluded as a factor deter-
mining the alignment of lizards.

The lizards’ head direction while basking was signifi-
cantly correlated with the vertical component (Z) and total
intensity (F) of the magnetic field, but we did not find any
correlation between the geomagnetic values and the liz-
ards’ alignments (Table 2). On the contrary, the lizards’
alignments were significantly correlated to the rate of
change in X, Y and Z, whereas the lizards’ head directions
were not correlated to the rate of change in any of the
geomagnetic values (Table 3).

Balearic lizard (Podarcis lilfordi)

Similarly to P. muralis, there were no differences between
males and females in the specific direction in which their
head points to when basking (Watson’s U2 test: U2 = 0.093,
0.5 > P > 0.2) and both groups were oriented randomly
(Rayleigh test: males: 345°, r = 0.102, P = 0.057,
N = 275; females: 49°, r = 0.074, P = 0.371, N = 181).
Therefore, the mean vector of the pooled data was calculat-
ed and again, the analysis of the head direction while
basking did not show a significant deviation from a random
distribution (Rayleigh test: 4°, r = 0.079, P = 0.059,
N = 456). In contrast, body alignments in both males
(Rayleigh test: 22°/202°, r = 0.228, P = 6.05 × 10−7,
N = 275) and females (Rayleigh test: 23°/203°, r = 0.174,

Table 1 Basic circular statistics for axial directions of Podarcis muralis and Podarcis lilfordi lizards (i.e., the lizards’ body alignment) while basking

α ± CI 95% r Circular SD Rayleigh test, Z Rayleigh test, P N

Podarcis muralis Pooled data (morning-noon-afternoon) 21°/201° ± 9° 0.288 45.222° 21.104 6.83 × 10−10 255

Morning (sun position 90–150°) 20°/200° ± 10° 0.351 41.476° 15.859 1.30 × 10−7 129

Noon (sun position 151–210°) 29°/209° ± 23° 0.206 50.915° 3.059 0.047 72

Afternoon (sun position 211–270°) 20°/200° ± 21° 0.256 47.263° 3.551 0.029 54

Podarcis lilfordi Pooled data (morning-noon-afternoon) 22°/202° ± 9° 0.207 50.87° 19.479 3.47 × 10−9 456

Morning (sun position 90–150°) 24°/204° ± 8° 0.343 41.91° 25.408 9.24 × 10−12 216

Noon (sun position 151–210°) 177°/357° 0.149 55.893° 1.178 0.308 53

Afternoon (sun position 211–270°) 75° ± 41° 0.141 113.362° 3.73 0.024 187
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P = 0.004, N = 181) showed a highly significant bimodal
orientation along the north-northeast and south-southwest
magnetic axis. Body alignments did not differ significantly

between both sexes (Watson’s U2 test: U2 = 0.062,
P > 0.5), and pooled data showed a highly significant
north-northeast and south-southwest body alignment

Fig. 1 Orientation of common Wall (a) and Balearic (b) lizards while
basking. Each triangle represents the specific direction in which one
common wall lizard’s head (a) and two Balearic lizards’ heads (b)
pointed to during basking. The double-headed arrow at the centre of

the plot indicates the mean bimodal axis for the distribution. The length
of the arrow is proportional to the mean vector length (r), with the
diameter of the circle corresponding to r = 1. Dashed lines represent the
95% confidence intervals for the mean vector

Fig. 2 Alignments of Podarcis
muralis at different times of day. a
Morning (sun position 90.1–
149.9°; mean = 123°). b Noon
(sun position 153.7–206.8°;
mean = 179°). c Afternoon (sun
position 211–265.3°;
mean = 257°). Each triangle
represents the specific direction in
which one lizard’s head points to
when basking. Mean bimodal
axis and its 95% confidence
interval are also shown. The
length of the arrow is
proportional to the mean vector
length (r), with the diameter of the
circle corresponding to r = 1
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(Rayleigh test: 22°/202° ± 8.9°, P = 3.47 × 10−9, N = 456;
Table 1, Fig. 1b).

When considering separately different times of day, they
exhibited a highly significant north-northeast and south-
southwest body alignment during the morning (Table 1,
Fig. 3). In contrast, Balearic lizards were randomly oriented
during noon and were oriented unimodally during the after-
noonwith a slight preference for the eastern direction (Table 1,
Fig. 3). Moreover, there were significant differences (Mardia-
Watson-Wheeler test: W = 19.933, P = 5.15 × 10−4; Fig. 3)
between the lizards’ orientation at different times of day (i.e.,
morning, noon and afternoon).

We did not find any significant correlation between the
sun’s azimuth and a lizards’ body axis (circular correlation:
R = 0.004, T = 0.077, P = 0.939, N = 456; Online Resource 2)
and between the sun’s altitude and the lizards’ body orienta-
tion (circular correlation: R = −0.030, T = −0.649, P = 0.516,
N = 456; Online Resource 2),

All the correlations between the lizards’ body alignment
and the head direction while basking, and the geomagnetic
field values at the time of the observation, were statistically
significant (Table 2). Furthermore, the lizards’ body align-
ments were significantly correlated to the rate of change in
X, Y, Z and F. Similarly, the lizards’ head directions were
correlated with the rate of change in all geomagnetic values
but X (Table 3).

Discussion

It is remarkable that the overall pattern of alignment is indis-
tinguishable between Podarcis muralis (21°/201°, N = 255)
and Podarcis lilfordi (22°/202°,N = 456) despite the complete
disparity in ecological characteristics of both species (Pérez-
Mellado 1998a, b). Our results show that this highly signifi-
cant bimodal orientation along the north-northeast and south-
southwest magnetic axis cannot be explained by an effect of
solar azimuth and/or altitude, nor was it related to wind direc-
tion, since observations were carried out in the absence of
wind. On the contrary, the orientation of the lizards was sig-
nificantly correlated with geomagnetic field values at the time
of each observation. Therefore, findings of this study indicate
that basking lizards tend to align their body axis with respect
to the geomagnetic field axis, thus exhibiting magnetic align-
ment (Wiltschko and Wiltschko 1995; Begall et al. 2013).
Although magnetic alignment does not necessarily require
an awareness of the geomagnetic field strength and the use
of a magnetic compass for spatial long-distance orientation
and navigation, it does prove magnetoreception (Begall et al.
2008). Therefore, our results provide the first evidence for
spontaneous alignment behaviour in free-living reptiles and
magnetoreception in lacertid lizards.

Parallel and perpendicular body orientations with respect to
the sun in Uta stansburiana and Sceloporus undulatus were

Table 2 Circular-linear correlation between the lizards’ axial alignment and the head direction while basking and the geomagnetic values at the time of
the observations

True north (X)
component

True east (Y)
component

Vertical (Z)
component

Total intensity of the
magnetic field (F)

r P r P r P r P

Podarcis muralis Lizards’ alignment (N = 255) 0.047 0.568 0.007 0.987 0.052 0.505 0.052 0.503

Lizards’ head direction (N = 255) 0.097 0.093 0.103 0.068 0.13 0.014 0.112 0.042

Podarcis lilfordi Lizards’ alignment (N = 456) 0.137 1.93 × 10−4 0.113 0.003 0.195 3.18 × 10−8 0.168 2.64 × 10−6

Lizards’ head direction (N = 456) 0.097 0.015 0.108 0.005 0.103 0.008 0.106 0.006

Table 3 Circular-linear correlation between the lizards’ body alignment and the head direction while basking and the rate of change of the
geomagnetic values at the time of the observations

Rate of change
dBX/dt (nT/min)

Rate of change
dBY/dt (nT/min)

Rate of change
dBZ/dt (nT/min)

Rate of change
dBF/dt (nT/min)

r P r P r P r P

Podarcis muralis Lizards’ alignment
(N = 255)

0.157 0.002 0.117 0.032 0.115 0.036 0.086 0.157

Lizards’ head direction (N = 255) 0.051 0.519 0.108 0.054 0.096 0.1 0.075 0.247

Podarcis lilfordi Lizards’ alignment
(N = 456)

0.088 0.03 0.152 3.01 × 10−5 0.121 0.001 0.126 7.11 × 10−4

Lizards’ head direction (N = 456) 0.064 0.161 0.113 0.003 0.104 0.007 0.092 0.021
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suggested to be behavioural responses to the thermal environ-
ment in the early morning and the late afternoon
(Waldschmidt 1980). Accordingly, perpendicular body align-
ment with respect to the sun increases the surface area exposed
to solar radiation whereas parallel body alignment in relation
to the sun might reduce the body surface exposed to the sun
during the midday hours (Bohórquez-Alonso et al. 2011).
However, using copper pipe models, Shine and Kearney
(2001) found that operative temperatures (i.e., potential body
temperatures that a reptile could achieve without thermoregu-
lation) in the environment were not affected by orientation of
the models with respect to the sun. Although, they also found
that orientation to the midday sun’s rays may be the least
important compared to those in the morning and afternoon.
Findings reported by Martín et al. (1995) in Iberolacerta
cyreni and Bohórquez-Alonso et al. (2011) in Gallotia galloti
fit well with those of Shine and Kearney (2001), because they
found that the compass orientation of the lizards’ longitudinal
body axis relative to the sun did not affect their heating rates.
Conversely, absorption of solar radiation may be regulated
controlling the angle of incidence of solar radiation on their
dorsal body surface through postural adjustments (Martín
et al. 1995). Furthermore, our own results show that common
wall lizards P. muralis and Balearic lizards P. lilfordi exhibited
a body alignment which was independent from sun position
(i.e., sun azimuth and sun altitude), thus excluding the sun as a

factor determining the alignment of the lizards and indicating
that the compass orientation of their body axis is not a primary
factor involved in their thermoregulation process.

Body axis alignment in Balearic lizards, as well as head
direction (i.e., the specific direction in which the lizards’ head
points to when basking), was clearly associated to the geo-
magnetic field values (i.e., X, Y, Z and F) at the time of each
observation, whereas the relationship was not so striking in
common wall lizards since only head direction while basking
was significantly correlated with the vertical component (Z)
and total intensity (F) of the magnetic field. On the other hand,
body alignment and head direction of Balearic lizards were
also noticeably associated to the rate of change in geomagnet-
ic field values at the time of each observation, excepting the
head direction and the rate of change in X; the common wall
lizards’ body alignments were associated to the rate of change
in X, Y and Z. Taken together, these findings suggest that the
lizards’ magnetic alignments vary in accordance with varia-
tions in the geomagnetic field values. Obviously, this pattern
of variation is stronger in P. lilfordi than in P. muralis but this
might be due to the fact that Aire islet is closer to Ebro
Magnetic Observatory (∼342 km) than where the study sites
in Cantabria are (∼470 km); also, the latitude difference is only
about 1° between Aire islet and Ebro Magnetic Observatory
and actual geomagnetic field values experienced by P. lilfordi
inhabiting Aire islet were more similar to those measured in

Fig. 3 Alignments of Podarcis
lilfordi at different times of day. a
Morning (sun position 90.5–
147.2°; mean = 111°). b Noon
(sun position 150.5–208.9°;
mean = 196°). c Afternoon (sun
position 210.5–288.5°;
mean = 253°). Each triangle
represents the specific direction in
which one lizard’s head points to
when basking (two observations
in (a) and (c) and one observation
in (b). Single-headed and double-
headed arrows at the centre of
each plot indicate the mean vector
or mean bimodal axis,
respectively, for each distribution.
The length of each arrow is
proportional to the mean vector
length (r), with the radius of the
circle corresponding to r = 1
(single-headed arrows) or with
the diameter of the circle
corresponding to r = 1 (doubled-
headed arrow)
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Ebro Magnetic Observatory than those at Cantabria study
sites; this could explain the stronger association between ori-
entations of Balearic lizards and geomagnetic field values.

Although the overall pattern of body alignment is neatly
distributed in a north-northeast and south-southwest magnetic
axis in both species of lizards, common wall lizards aligned
their body according to this pattern regardless of the time of
day (i.e., morning, noon and afternoon) whereas Balearic liz-
ards were randomly oriented during the noon. It is noteworthy
to mention that short-term temporal variation in the magnetic
field tends to be more pronounced during the midday hours
(Skiles 1985), and this could explain that Balearic lizards did
not show a significant body axis alignment at noon, alongwith
the fact that common wall lizard alignments were clustered
less closely around the mean vector during the midday. Thus,
temporal variations in the magnetic field increase the scatter in
the lizards’ body axis alignment.

Little is known about the biological meaning of magnetic
alignment in vertebrates (Begall et al. 2013), but it has been
suggested that magnetic alignment might assist animals in
reading and organizing their mental map of space and may
serve to encode their environment (Begall et al. 2008, 2013;
Phillips et al. 2010b). Animals may obtain a constant direc-
tional referencemaintaining a certainmagnetic directionwhile
they are performing different tasks (Begall et al. 2008, 2013;
Schlegel 2008; Burda et al. 2009;Červený et al. 2011). Hence,
the overall north-northeast and south-southwest magnetic
alignment found in P. muralis and P. lilfordi may provide
lizards with a constant directional reference while they are
sun basking. A constant directional reference for spatial ori-
entation might be useful to efficiently escape from predators
(Begall et al. 2008; Obleser et al. 2016). A lizard basking to
raise its body temperature exposes itself to an increased risk of
predation because it exposes its whole dorsal body surface to
the sun, and therefore, it becomes highly conspicuous to pred-
ators (Huey 1974; Herczeg et al. 2006). Hence, maintaining
magnetic alignment while basking P. muralis and P. lilfordi
get a constant directional reference which might improve their
mental map of space to accomplish efficient escape behaviour.

Interestingly, both species of lacertid lizards exhibitedmag-
netic alignment behaviour near the magnetic north-south axis
but deviating significantly clockwise from magnetic north.
This clockwise deviation from magnetic north is a typical
feature in the vertebrates’ axial magnetic alignment behaviour
(Begall et al. 2013) that has been most likely attributed to a
lateralization in the central nervous system processing of mag-
netic information (Malkemper et al. 2016). However, although
a radical pair-basedmagnetoreceptor (radical pair mechanism)
and a magnetite-based magnetoreceptor (magnetite-based
mechanism) have been ident i f ied as candidates ,
magnetoreception mechanism underlying magnetic alignment
in vertebrates is not clearly understood, and asymmetries at
the receptor level should not be discarded as responsible of the

clockwise deviation from magnetic north (Malkemper et al.
2016).

Although, both magnetoreception mechanisms differ in
their functional properties (Ritz et al. 2000, 2004, 2010;
Wiltschko and Wiltschko 2005; Rodgers and Hore 2009),
the available evidence demonstrates that both mechanisms
are not necessarily mutually exclusive since at least birds
(Wiltschko et al. 2011; Wiltschko and Wiltschko 2013) and
amphibians (Phillips 1986; Phillips and Borland 1994) use
both types of mechanisms for various tasks.

The magnetite-based mechanism is involved in the fixed
direction responses of birds, since they are unaffected by fields
oscillating in the MHz range,and respond to the polarity of the
magnetic field but not to inclination (Wiltschko et al. 2005,
2007; Wiltschko and Wiltschko 2005; Stapput et al. 2008).
Likewise, magnetite-based magnetoreception mediates the
fixed axis magnetic orientation in amphibians (Phillips et al.
2002). However, findings from other studies provide some
evidence that a radical pair mechanism is involved in magnet-
ic alignment behaviour (Landler et al. 2015; Malkemper et al.
2015). Yearling snapping turtles (Chelydra serpentina) show
spontaneous alignment relative to the magnetic field that is
affected by low-level radio frequency fields (i.e., fields oscil-
lating in the MHz range), a trait indicating that a radical pair
mechanism underlies magnetic alignment in this species of
reptile (Henbest et al. 2004; Landler et al. 2015). Similarly,
wood mice (Apodemus sylvaticus) have been shown to orient
their nests along the north-northeast and south-southwest axis
relative to the magnetic field using a magnetic sense based on
a radical pair mechanism (Malkemper et al. 2015). These
findings well agree with the idea that animals might use infor-
mation obtained from the geomagnetic field to encode spatial
information in their environment (Phillips et al. 2010b;
Landler et al. 2015).

Retinal (Wiltschko et al. 2002, 2003) or pineal
(Deutschlander et al. 1999a, b; Phillips et al. 2001) photore-
ceptors have been found to play a role in magnetoreception
through a radical pair mechanism. In lizards, a light-dependent
magnetoreceptive response involving the parietal eye has been
shown in the Agamidae bearded dragon (Pogona vitticeps).
The parietal eye, together with the pineal gland, forms the
pineal complex of lizards. Although both the pineal gland
and the parietal eye are photosensitive, the parietal eye is a
complex photoreceptive structure, with a well-defined lens,
cornea and retina (Tosini 1997). Reptilian parietal eye can
discriminate between different wavelengths of light through
chromatic antagonism; i.e., opposing responses consisting of
short-wavelength-sensitive hyperpolarisation and green-
sensitive depolarisation (Solessio and Engbretson 1993;
Wada et al. 2012). Antagonistic spectral mechanism in photo-
receptors of the parietal eye of lizards exhibits spectral fea-
tures similar to those found in the pineal complex of amphib-
ians (Dodt and Heerd 1962; Eldred and Nolte 1978; Korf et al.
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1981) and is consistent with the properties of the light-
dependent magnetic compass found in newts and frogs
(Diego-Rasilla et al. 2010, 2013, 2015; Phillips et al. 2010a).
In fact, short-wavelength and long-wavelength inputs to the
magnetic compass of amphibians are mediated by extraocular
photoreceptors located in the pineal complex (Deutschlander
et al. 1999a, b; Phillips et al. 2001).

Considered in their entirety, previous findings suggest that
spontaneous magnetic alignment in common wall lizards and
Balearic lizards could be mediated by a radical pair mecha-
nism involving the parietal eye. Further studies will need to be
undertaken to examine the role of the parietal eye and the
effects of wavelength of light on the lizards’ magnetic align-
ment. In addition, further research studying separately the ef-
fect of polarity and inclination of the ambient field, using
treatments with brief magnetic pulses to remagnetize magne-
tite particles or using magnetic fields oscillating in the low
MHz range , wi l l be use fu l to cha rac te r i ze the
magnetoreception mechanism underlying magnetic alignment
in lizards (Begall et al. 2013).
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